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1 Introduction

Maximal functions are a central object in analysis that arise throughout the study of singular integral
operators, PDEs, ergodic theory, and beyond. One of the simplest and most natural maximal operators
is the Hardy-Littlewood maximal operator M for the Euclidean ball in Rd. For f : Rd → R, the
Hardy-Littlewood maximal function M is defined as

Mf(x) = sup
r>0

1

Voln(B(x, r))

∫
B(x,r)

|f(y)|dy,

the maximum of averages of f over all Euclidean balls centered at x. A classical result of this maximal
function is the Hardy-Littlewood maximal inequality, from which the Lebesgue differentiation theorem
follows immediately:

Theorem 1. (Hardy-Littlewood Maximal Inequality) M satisfies a weak L1 bound with constant
3d. Explicitly, letting µ be the Lebesgue measure, we have that

µ
(
{x ∈ Rd :Mf(x) ≥ α}

)
≤ 3d

α
∥f∥L1(Rd).

Corollary 1. (Lebesgue Differentiation Theorem) For any Lebesgue measurable function f :
Rd → R, we have that for almost all x ∈ Rd,

lim
r→0

1

Voln(B(x, r))

∫
B(x,r)

f(y)dy = f(x).

The proof of Theorem 1 follows from the Vitali covering lemma and the inner-regularity of the Lebesgue
measure. We also have the much simpler observation that ∥Mf∥L∞(Rd) ≤ ∥f∥L∞(Rd), so interpolating
between L∞ and L1,∞ with the Marcinkiewicz interpolation theorem, we get that for all p ∈ (1,∞),

∥Mf∥Lp(Rd) ≤ 2

(
p

p− 1

)1/p

(31/p)d∥f∥Lp(Rd). (1.1)

From this, we may conclude that the maximal function M is of strong type (p, p), or Lp(Rd) bounded,
for all d and p ∈ (1,∞].

A fundamental question in the study of maximal functions is the behavior of the constants Cp,d such
that

∥Mf∥Lp(Rd) ≤ Cp,d∥f∥Lp(Rd)

We see that the Euclidean maximal function M is not bounded as an operator on L1(Rd) by lower
bounding Mf(x) by ∥x∥−d up to a constant, so it makes sense that as p goes to 1, the bound (1.1) goes
to ∞. What is not so clear, however, is the exponential dependence on d, and whether or not this can
be improved.

In 1983, Stein and Strömberg showed that Euclidean Hardy-Littlewood maximal function does in fact
have Lp(Rd) → Lp(Rd) operator norm bounded independent of d ([SS83]). Their proof passes through
earlier work of Stein that proved the Lp boundedness of the spherical maximal function ([Ste76]), using
a technique called the “method of rotations” to extend this result to dimension-independent strong (p, p)
bounds for the Euclidean maximal function.

In 1986, Bourgain proved that for an arbitrary symmetric convex body B of volume 1, that the associated
maximal operator MB defined as

MBf(x) = sup
r>0

1

Voln(x+ rB)

∫
x+rB

|f(y)|dy

has bounded L2(Rd) → L2(Rd) operator norm independent of dimension as well as the convex body
B ([Bou86a]). Later that year, Carbery (and independently, Bourgain) extended this result to get
dimension-free strong (p, p) bounds of MB for all p > 3

2 independent of B as well ([Car86], [Bou86b]).
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The obstruction for this result to hold for p ∈ (1, 32 ] is contained in an interpolation argument central to
the proof.

In 1990, Müller showed that for p ∈ (1, 32 ], the constants Cp,d for the maximal operator MB could be
bounded as a function in geometric properties of B, in particular the volumes of the smallest cross
sections and largest projections ([Mül90]). Using these techniques, it follows that for all q ∈ [1,∞)
and all p ∈ (1,∞], we can obtain dimension-free bounds on the Lp(Rd) operator norms of the maximal
function associated with the ℓq ball. Interestingly, the case of the maximal function of the ℓ∞ ball was
not settled until 2014 by Bourgain ([Bou14]), due to stark differences in the geometry of the ℓ∞ ball
compared to the other ℓq balls for q ∈ [1,∞) as the dimension grows.

Any Lp bound on MB gives us a differentiation theorem for the convex body B (following immediately
from the fact that continuous functions with compact support are dense in Lp), i.e, that for almost all
x ∈ Rd,

lim
r→0

1

Vold(x+ rB)

∫
x+rB

f(y)dy = f(x).

Independence of dimension results for a family of convex bodies in Rd as d → ∞ can be used to
prove differentiation theorems in infinite dimensional spaces. For example, Tǐser showed in [Tǐs88]
that the independence of dimension result of the Euclidean maximal function could be used to prove a
differentiation theorem for certain Gaussian measures on infinite dimensional Hilbert spaces.

The primary goal of this paper is to give a thorough exposition of many of the results discussed in the
introduction, with a focus on motivation and connecting heuristics with formalism. After developing
the necessary prerequisites in Section 2, we prove Stein’s dimension-free Lp bounds for the Euclidean
maximal function in Section 3. Section 4 is dedicated to Bourgain’s dimension-independent L2 bounds
for maximal function associated to convex bodies, and Section 5 is spent expositing Carbery’s approach
to extending this result to p > 3

2 . Finally, in Section 6 we briefly outline Müller’s approach to dimension-
independent Lp bounds for maximal functions associated to the ℓq balls, for q ∈ (1,∞) and all p > 1,
and discuss some open questions in the field.

1.1 A Historical Remark: Weak Type (1, 1) Bounds

While some optimizations to the Vitali covering lemma can prove a slightly better weak L1 bound for
the Euclidean maximal function than the one from Theorem 1, this approach still leaves us with a bound
growing exponentially in the dimension of Rd. A significant amount of research has been done to improve
these weak type (1, 1) bounds and understand the true behavior the L1,∞(Rd) → L1(Rd) operator norm
of a maximal function C1,d as d→ ∞.

In 1983, Stein and Strömberg showed that for the maximal operator associated to the Euclidean ball,
C1,d grows linearly in the dimension d ([SS83]). In fact, the optimal constant for this linear growth was

found by Melas in 2003 ([Mel03]), with constant 11+
√
61

12 . Stein and Strömberg also showed in the same
paper that for an arbitrary symmetric convex body of volume 1, the growth of C1,d is bounded by d log d.
While we don’t yet have specific results on the relation of d and C1,d for arbitrary ℓq balls, Aldaz in 2011
showed that for the cube, C1,d goes to infinity monotonically in d ([Ald11]).

The table below summarizes our current understanding of maximal functions:

Averaging body Strong (p, p) Weak (1, 1)
Euclidean ball Dimension independent for p > 1 Cd,C = 1.567208 . . .

Arbitrary convex B, Vold(B) = 1 Independent of d and B for p > 3
2 O(d log d)

ℓq ball, q ∈ [1,∞) Dimension independent for p > 1 O(d log d)
ℓ∞ ball Dimension independent for p > 1 Goes to ∞

2 Preliminaries and Notation

We assume the reader has familiarity with Fourier Analysis and basic Harmonic analysis. For a reference,
see for instance [Gra24]. Throughout this paper, when we refer to Rd, we refer to Euclidean space endowed
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with the Lebesgue measure µ. We denote S(Rd) as the set of Schwartz functions on Rd. We also say
that X ≲ Y if there is a constant C such that X ≤ CY , and notate dependencies in C in the subscript
of the inequality sign.

For p0 ∈ [1,∞], we say that an operator M is weak (p0, p0) bounded if there exists a constant C such
that

∥Mf∥Lp0,∞(Rd) ≤ C∥f∥Lp0

Where the Lp0,∞ norm is given by

∥f∥Lp0,∞ = inf{C : µ(x : f(x) > α) <
Cp0

αp0
for all α > 0}

For p1 ∈ [1,∞], we say that an operator is strong (p1, p1) bounded, or just Lp bounded, by a constant
C if our operator M has operator norm from Lp1(Rd) → Lp1(Rd) bounded by C. This operator norm
will often be shorthanded as ∥M∥p1→p1

.

We denote the Fourier transform of a function f : Rd → R as f̂ or (f)∧, with

f̂(ξ) =

∫
Rd

f(x)e−2πix·ξdξ.

We also denote the inverse Fourier transform f as f∨, defined as

f∨(x) =

∫
Rd

f(−ξ)e−2πix·ξdx.

We will consider dilations of a function f : Rd → R by a constant λ ∈ R>0 as the function x → f(xλ),
denoted by f[λ]. We will also consider normalized rescalings of a function f : Rd → R by a constant

t ∈ R>0 as the function x → 1
td
f(t−1x), denoted by f(t). Note that normalized rescaling preserves the

L1 norm of f . We also note that dilation and normalized rescaling are dual under the Fourier transform,
i.e.

(f(t))
∧ = (f)∧[t] (f[λ])

∧ = (f)∧(λ).

Given a function m : Rd → R such that m ∈ L∞(Rd), we can define an L2-bounded operator Tm by

Tf = (m(ξ)f̂(ξ))∨.

We call Tm a Fourier multiplier with symbol m. We will often refer to a Fourier multiplier only by it’s
symbol m, and refer to the Lp operator norm of Tm the as the Lp multiplier norm of m, denoted by
∥m∥p→p. We also note the following important and simple fact that both m and mλ have the same Lp

multiplier norms.

We state a simple yet useful criterion to understand the Lp boundedness of a multiplier operator:

Lemma 1. Suppose that a Fourier multiplier T with symbol m(ξ) : Rd → R is a bounded
operator from Lp(Rd) to Lp(Rd). For some ψ ∈ L1(0,∞), consider the Fourier multiplier N with
symbol

n(ξ) =

∫ ∞

0

ψ(λ)m(λξ)dλ.

We have that

∥n∥p→p ≤ ∥ψ∥L1(0,∞)∥m∥p→p.

This proof follows easily from the fact that m and mλ have the same Lp multiplier norms, since we can
approximate ψ(λ) with simple functions, use linearity of Fourier multipliers, and then apply a limiting
argument.
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2.1 Interpolation Results

Interpolation will play a significant role throughout this paper. Oftentimes for some p < 2, we will be
required to bound the Lp norm of an operator. It will be much easier to work in in L2, where we have
access to Parseval’s identity, which once we interpolate with a “naive” bound in Lq for 1 < q < 2 will
give us our desired result. One main tool for us will be the Marcinkiewicz Interpolation Theorem, which
tells us that given an operator T that is weak (p0, p0) bounded and strong (p1, p1) bounded, then it is
strong (p, p) bounded for all p0 < p < p1.

Theorem 2. (Marcinkiewicz Interpolation Theorem) Let 0 < p0 < p1 ≤ ∞, and let T be a
sublinear operator on measurable functions from Rd to R. If we have that T is weak (p0, p0)
bounded by a constant A0, and strong (p1, p1) bounded by a constant A1, then for all p between
p0 and p1, we have that T is strong (p, p) bounded by the constant

A = 2

(
p

p− p0
+

p

p1 − p

) 1
p

A
1/p−1/p1
1/p0−1/p1
0 A

1/p0−1/p

1/p0−1/p1
1 .

Note that by a trivial application of Chebyschev, strong (p0, p0) bounded implies weak (p0, p0) bounded,
so Marcinkiewicz can also interpolate between two strong-type bounds for a sublinear operator.

Instead of just interpolating a fixed operator between different Lp spaces, we will often want to interpolate
between a family of operators as well. The result that allows us to this, interpolation of analytic families
of operators, is a generalization of Riesz-Thorin interpolation and the setup is as follows:

Let Tz be a family of linear operators on measurable functions from Rd to R defined for all z ∈ S ⊂ C,
where S is the strip {z : r0 ≤ Re(z) ≤ r1}. Suppose that

1. The family Tz is analytic in the sense that for all Schwartz functions functions f, g : Rd → R,

z →
∫
Rd

Tz(f(x)) · g(x)dx

is analytic on the the interior of S and continuous on all of S.

2. The family Tz has admissible growth throughout S, meaning it satisfies the growth condition that
there exists an 0 < a < π such that for all f, g ∈ S(Rd), there is constant Cf,g such that for all
z ∈ S

log

∣∣∣∣∫
R
Tz(f)g

∣∣∣∣ ≤ Cf,ge
a Im(z).

Then we have the following result:

Theorem 3. (Interpolation of analytic families of operators) Let Tz be an analytic family of
linear operators satisfying the admissible growth condition above, and let 1 ≤ p < q ≤ ∞. Also
suppose that M0 and M1 are positive functions on the real line such that

∥Tr0+iy(f)∥Lp ≤M0(y)∥f∥Lp

∥Tr1+iy(f)∥Lp ≤M1(y)∥f∥Lq .

We suppose additionally that M0 and M1 satisfy the following growth conditions for some 0 <
b < π,

logM0(y), logM1(y) ≲ eb|y|.

Under these conditions, we have that for θ ∈ [0, 1], p′ = θ
p + (1−θ)

q , and α = θr0 + (1− θ)r1

∥Tα(f)∥Lp′ ≲θ ∥f∥Lp′ .

For proofs of both of these interpolation theorems, or their statements in full generality, see Chapter 1.3
of [Gra14].
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2.2 An Introduction to Littlewood-Paley Theory

Littlewood-Paley theory is a recurring tool in the study of maximal averaging operators. In this subsec-
tion, we briefly introduce the fundamental ideas in this area and how they will be used.

We first construct a dyadic partition of unity of R>0. Fix ψ0 : Rd → R to be a C∞ function taking the
value 1 when |ξ| ≤ 1 and supported on |ξ| ≤ 2. Then we define

ψj(ξ) = ψ0(2
−jξ)− ψ0(2

1−jξ)

Each ψj is supported on the annulus {2j−1 ≤ |ξ| ≤ 2j+1}, and we have the pointwise relation that∑
j∈Z ψj = 1.

Figure 1: Our dyadic partition of unity

Using this, we define the Littlewood-Paley projection operators Rj as a Fourier multiplier with symbol
ψj(|ξ|), i.e.

R̂jf(ξ) = ψj(|ξ|)f̂(ξ).

By Young’s inequality, it is clear that Rj is Lp bounded for all p. In this way, we can write

f =
∑
j∈Z

Rjf.

What the projection operator Rj is doing is “filtering” out all frequencies not at the scale of 2j . Then
by writing f as the sum of it’s projections, we are breaking f apart into functions who’s frequencies are
localized in a given dyadic range.

An important heuristic that comes with Littlewood-Paley theory is that functions with low frequencies
relative to the interval we are studying them at are well-behaved in the following way: assume that we
are working with a function f : R → R (that is, say, Schwartz) on the interval [−1, 1]. If we consider
frequency projections Rjf for j ≪ 1, then Rjf oscillates at frequencies around 2−j . While this says
nothing about the magnitude of Rjf , it does give us control on it’s regularity, or how wildly it’s behavior
can change in this interval. Since the periods of the frequencies Rj oscillates are much larger than the
interval [−1, 1] we’re studying Rjf on, Rjf cannot change it’s behavior significantly in this interval, and
we should expect to have a good understanding of Rjf on [−1, 1] for j ≪ 1.

On the other hand, when j ≫ 1, Rjf oscillates at frequencies much finer than the width of the interval,
and so we cannot expect to have a strong handle of the behavior of Rjf at these scales without further
tools. However, what we do have is that on this interval, Rjf has approximately mean zero. The figure
below illustrates both of these observations.

The analysis of maximal functions plays extremely well with this Littlewood-Paley decomposition if we
break the maximal function into dyadic regions as well. Given a maximal operator MB associated to
some convex body B, we write AB,rf to be the average of f over the convex body x+Br. Then we can
write

MBf(x) = sup
r>0

AB,rf(x) = sup
k∈Z

sup
2k≤r≤2k+1

AB,rf(x) = sup
k∈Z

sup
2k≤r≤2k+1

∑
j∈Z

AB,rRjf.
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Figure 2: Littlewood-Paley heuristics

The terms AB,rRjf are taking the average of some convex body at a scale of r ∼ 2k for some k, of a
function that oscillates at frequencies at a scale of 2j . If j is much less than k, we have a very strong
understanding of AB,rRjf . In the case where j is much greater than k, then since Rjf has basically
mean zero on x+rB for r ∼ 2k, AB,rRjf will decay as j goes to infinity. This will rigorously be achieved
by studying the structure of AB,r (in particular, it’s a Fourier multiplier who’s symbol has some nice
decay properties). This phenomenon, where on a fixed interval an averaging operator picks up higher
and higher frequencies less and less, is an instance of a general phenomenon of almost orthogonality in
Littlewood-Paley theory, where if a function’s frequency is localized away from where an operator is
“looking,” it’s contribution is negligible.

3 Dimension-Free Lp Bounds for the Euclidean Ball Maximal
Function

Throughout this section, we assume B(x, r) to be the Euclidean ball centered at x and of radius r.
One of the most foundational results in the study of maximal functions is that for p ∈ (1,∞), the
Hardy-Littlewood maximal function for the Euclidean ball

Mf(x) = sup
r>0

1

VoldB(x, r)

∫
B(x,r)

|f(y)|dy,

has Lp(Rd) → Lp(Rd) operator norm bounded independent of the dimension d. In this section, we will
exposit a proof of Stein’s original proof of this result ([Ste82] and [SS83]), with inspiration from two
other expositions, [Alm19] and [Tao11]. Our proof will first pass through a proof that the spherical
maximal function MS has bounded Lp(Rd) → Lp(Rd) operator norm, where MSf(x) is defined to be
the maximum of all spherical averages of f centered at x:

MSf(x) = sup
r>0

∫
Sd−1

|f(x+ rω)|dσd−1(ω). (3.1)

In the above equation, dσd−1 denotes the normalized surface measure on Sd−1. Then, we will use a
technique called the method of rotations to show that our resulting operator norm bound can be made
independent of d. Since pointwise,

Mf(x) ≤MSf(x)

we will conclude the result.

3.1 Boundedness of the Spherical Maximal Function

We first study the spherical maximal function (3.1) on Schwartz functions f : Rd → R. We write MSf
as

MSf = sup
r>0

Ar|f |,

where we denote Arf as the spherical average

Arf =

∫
Sd−1

f(x− rω)dσd−1(ω).
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For notational convenience, we will drop the exponent on dσd−1 when it is clear what measure we are
working with. Our main goal will be to prove a statement about the Lp boundedness of MS :

Theorem 4. (Stein’s Spherical Maximal Theorem) Let d ≥ 3. Then for each d
d−1 < p ≤ ∞, and

f ∈ S(Rd), we have that
∥MSf∥Lp(Rd) ≤ Cd,p∥f∥Lp(Rd)

for Cd,p some constant dependent on d and p.

Throughout this subsection, when we write inequalities ≲, the constants in these inequalities are depen-
dent on p and d.

To prove this, we first note that MS has bounded operator norm from L∞ to L∞, since we have the
pointwise bound MSf(x) ≤ ∥f∥∞. Therefore, if we prove Stein’s spherical maximal theorem for all
d

d−1 < p ≤ 2, then we can interpolate with the (∞,∞) bound to conclude the result for the p we desire.

We will first study a localized version M1
S of the maximal operator MS , where we only average over

spheres between radii 1 and 2:
M1

S = sup
1≤r≤2

Ar|f |.

We will see that the argument forM1
S will generalize to all ofMS . We make use of Littlewood-Paley theory

and decompose our function f using an annular frequency decomposition. Just as in the preliminaries,
we fix ψ0 : Rd → R to be a C∞ function taking the value 1 when |ξ| ≤ 1 and supported on |ξ| ≤ 2, and
define ψk(ξ) = ψ0(2

−kξ) − ψ0(2
1−kξ), supported on the annulus {2k−1 ≤ |ξ| ≤ 2k+1}. Pointwise, this

satisfies
∑

j∈Z ψj = 1.

Now we decompose f into it’s frequency projections Rjf , where R̂jf(ξ) = ψj(ξ)f̂(ξ). Since f is Schwartz,
we can use the inverse Fourier transform to write

f =
∑
k∈Z

Rkf.

To boundM1
S , we split f into it’s “low” and “high” frequencies. We let R≤1f =

∑
k≤1Rkf . Then by the

triangle inequality and the subadditivity of MS , proving the Lp boundedness of M1
S reduces to proving

the following two claims:
∥M1

S(R≤1f)∥Lp(Rd) ≤ Cd,p∥f∥Lp(Rd) (3.2)

∥M1
S(Rkf)∥Lp(Rd) ≤ Cd,p,k∥f∥Lp(Rd) for k > 1, and

∞∑
k=2

Cd,p,k <∞ (3.3)

The motivation behind this decomposition is that that the operator M1
S averages over radii at a dyadic

scale of 1 (so 1 ≤ r ≤ 2). The frequency projections Rkf for k ≤ 1 cannot change at finer frequencies
than |ξ| ≤ 1. In this way, we expect for M1

SRjf(x) to be approximately f(x), since the behavior of
Rjf(x) for j ≤ 1 cannot change much in this annulus. When k > 1, the frequencies Rk oscillates at
has period much smaller than the width of the annulus that we are studying, and so has approximately
mean zero on the annulus. Therefore, we expect M1

SRjf to be small at these scales.

3.1.1 Proving the first claim

To prove (3.2), we note that we can write Rjf as a convolution of f with the Schwartz function ψ̂j .

Therefore we can write R≤1f as f ∗ φ, where φ =
∑

j≤1 ψ̂j . By Fubini’s theorem, we can write that

ArR≤1f(x) = Ar(φ ∗ f)(x) =
∫
Sd−1

∫
Rd

f(y)φ((x− rω)− y)dy dσ(ω)

=

∫
Rd

f(y)

∫
Sd−1

φ((x− y)− rω)dσ(ω) dy = f ∗Arφ.

Now since φ(y) is Schwartz (in fact, compactly supported), it is bounded up to a constant by 1
(1+|y|)100d

(this constant is dependent on d since the ψj are). Thus, we can bound Arφ for r ∈ [1, 2] by
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|Arφ(x)| ≤
∫
Sd−1

|φ(x− rω)|dσ(ω) ≲
∫
Sd−1

1

(1 + |x− rω|)100d
dσ(ω) ≲

1

(1 + |x|)100d
.

With this, we get the pointwise bound

|ArR≤1f(x)| ≤ |f ∗Arφ| ≲
∫
Rd

|f(x− y)| dy

(1 + |y|)100d
.

Heuristically, this just looks like averaging f on a small ball around x, so we should have that∫
Rd

|f(x− y)| dy

(1 + |y|)100d
≲Mf(x).

This easily follows from the following calculation:∫
Rd

|f(x− y)| dy

(1 + |y|)100d
=
∑
k∈N

∫
k≤|y|≤k+1

|f(x− y)| dy

(1 + |y|)100d

≲
∑
k∈N

k−100d

∫
k≤|y|≤k+1

|f(x− y)|dy ≲
∑
k∈N

k−100d|B(x, k)|Mf(x)

≲
∑
k∈N

k−100dkdMf(x) ≲Mf(x).

Since Mf is Lp bounded for p ∈ (1,∞), as shown in the introduction, the fact that |ArR≤1f(x)| is
pointwise bounded by Mf uniformly for 1 ≤ r ≤ 2 allow us to conclude that |ArR≤1f(x)| is Lp bounded
as well, proving (3.2).

3.1.2 Proving the second claim

We now work toward (3.3). If we run the same approach we took with the first claim for every k > 1,

we again can write ArRkf(x) = f ∗Arφk, where φk = ψ̂k. However, the constant such that

Arφk(x) ≲
1

(1 + |x|)100d

is dependent on k exponentially, which intuitively can be seen by noting that can be seen noting φ̂k =
(x − rω) = 2kdψ̂0(2

kξ) − 2(k−1)dψ̂0(2
k−1ξ) is an approximation to the identity of height 2kd and width

2−k. Formally, we have that

|Arφk(x)| =
∫
Sd−1

|φk(x− rω)|dσ(ω)

≤ 2kd
∫
Sd−1

|ψ̂0(2
k(x− rω))|+ |2−dψ̂0(2

k−1(x− rω))|dσ(ω) ≲ 2k(1 + |x|)−100d.

With this, we see that

|ArRkf(x)| = |f ∗Arφ̂k(x)| ≲
∫
Rd

|f(x− y)| 2k

(1 + |y|)100d
dy ≲ 2kMf(x),

and taking supremums on both sides gives us the pointwise bound

∥M1
SRkf∥Lp ≲ 2k∥Mf(x)∥Lp ≲ 2k∥f∥Lp (3.4)

for all p ∈ (1,∞). While this bound isn’t good enough to prove (3.3) on it’s own, since 2k → ∞ as
k → ∞, we can make use of it by interpolating it with another result. In the regime where k > 1, as
mentioned before we need to make use of the fact that Ar is a Fourier multiplier who’s symbol has rapid
decay. Precisely, we have that

Ârf(ξ) =

∫
Rd

∫
Sd−1

f(x− rω)dσ(ω) e−2πix·ξdx

=

∫
Rd

∫
Sd−1

f(x)e−2πix·ξe−2πirω·ξdσ(ω)dx = d̂σ(rξ)f̂(ξ).
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So Ar has the symbol d̂σ(rξ) =
∫
Sd−1 e

−2πiω·rξdσ(ω). Furthermore, a well known fact on estimates of
Bessel functions (see the appendices of [Gra14] for details) tells us that

|d̂σ(ξ)|, |∇d̂σ(ξ)| ≤ Cd

(1 + |ξ|) d−1
2

. (3.5)

Due to the rapid decay of |d̂σ(ξ)| and |∇d̂σ(ξ)| as ξ gets large, we are motivated to study L2 bounds of
MSRkf for k > 1, where we have access to Plancharel, and then interpolate this bound with (3.4).

Using the fact that R̂kf is supported on annulus of inner radius 2k−1 and outer radius 2k+1, we have
that for r ∈ [1, 2],

∥ArRkf∥L2 = ∥ÂrRkf∥L2 = ∥R̂kf(ξ)d̂σ(rξ)∥L2 ≲ 2−k(d−1)/2∥R̂kf∥

≤ 2−k(d−1)/2∥f̂∥L2 ≤ 2−k(d−1)/2∥f∥L2 . (3.6)

This isn’t strong enough for us, since we need to take an uncountable supremum over r (otherwise,
we could bound an supremum in r with a sum or a square sum in r). However, the Littlewood-Paley
philosophy tell us that on dyadic scales of 2j , we expect our function to be controlled in oscillation on
intervals of size 2−j . In this way, we work to change the supremum over [1, 2] into a maximum of a discrete
set of points spaced approximately 2−k away from each other (since intuitively, the function shouldn’t
“change much” between these points, so this countable maximum should capture all the information we
need). Heuristically, what we expect to happen is if we discretize our sum as described,

sup
1≤r≤2

|ArRkf(x)| ≈ sup
n∈N

1≤2−kn≤2

|AnRkf(x)|

then approximate this finite supremum with the square function and take L2 norms, we get that

∥ sup
1≤r≤2

|ArRkf |∥L2 ≲ ∥(
∑
n∈N

1≤2−kn≤2

|AnRkf |2)
1
2 ∥L2 ≲

∑
n∈N

1≤2−kn≤2

∥AnRkf∥L2

≲
(
2k(2−k(d−1)/2∥f∥L2)2

) 1
2

= 2−k(d−2)/2∥f∥L2 .

We now work to achieve this bound rigorously. We consider a 2−k-net {tτ}τ≤2k of [1, 2], which is a set
of 2k points {t1, t2, . . . , t2j} where tτ and tτ+1 are spaced out on the order of 2−k from each other. The
fundamental theorem of calculus and the triangle inequality tell us that for any C1 function ϕ and two
real numbers s1 < s2,

sup
s1≤t≤s2

ϕ(t) ≤ |ϕ(s1)|+
∫ s2

s1

|ϕ′(s)|ds. (3.7)

Plugging in AtRkf for ϕ and tτ , tτ+1 for s1, s2 in the above identity, and taking L2 norms, we get that∥∥∥∥∥ sup
tτ≤t≤ttτ+1

|AtRkf |

∥∥∥∥∥
L2

≤ ∥AtτRkf∥L2 +

∥∥∥∥∫ tτ+1

tτ

∣∣∣∣ ddrArRkf

∣∣∣∣ dr∥∥∥∥
L2

. (3.8)

We already know the contribution of the first term on the right by (3.6), since tτ ∈ [1, 2]. We now bound
the second term on the right. Since ArRkf ’s derivative in r is L1, by the mean value theorem and the
Lebesgue dominated convergence theorem we can pull the derivative in r out of the Fourier transform
and calculate(

d

dr
ArRkf

)∧

(ξ) =
d

dr
(ArRkf)

∧(ξ) =
d

dr
d̂σ(ξ)R̂kf(ξ) = ξ · ∇d̂σ(rξ)R̂kf(ξ).

Now we have by Minkowski’s inequality for integrals that∥∥∥∥∫ tτ+1

tτ

∣∣∣∣ ddrArRkf(·)
∣∣∣∣ dr∥∥∥∥

L2

≤
∫ tτ+1

tτ

∥∥∥∥ ddrArRkf(·)
∥∥∥∥
L2

dr

=

∫ tτ+1

tτ

∥ξ · ∇d̂σ(ξ)R̂kf(rξ)∥L2dr.
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Using the fact that R̂kf is supported on [2k−1, 2k+1], as well as the decay of ∇d̂σ from (3.5), we have

that ξ · ∇d̂σ(rξ) for 1 ≤ r ≤ 2 is maximized by 2k

(2kr)
d−1
2

≤ 2−k( d−3
2 ). Also using that |ξ · ∇d̂σ(rξ)| ≤

|ξ||∇d̂σ(rξ)|,

∥ξ · ∇d̂σ(ξ)R̂kf(rξ)∥L2 ≤ 2−k( d−3
2 )∥f∥L2 ,

allowing us to conclude that∥∥∥∥∫ tτ+1

tτ

∣∣∣∣ ddrArRkf(·)
∣∣∣∣ dr∥∥∥∥

L2

≲ (tτ+1 − tτ )2
−k( d−3

2 )∥f∥L2 ≲ 2−k( d−1
2 )∥f∥L2 . (3.9)

With this, we use (3.8) to carry out the bound ∥sup1≤t≤2 |ArRkf |∥L2 we have worked toward. We see
that

∥ sup
1≤t≤2

|ArRkf |∥L2 = ∥sup
τ

sup
tτ≤t≤tτ+1

|ArRkf |∥L2 ≤

(∑
τ

∥ sup
tτ≤t≤tτ+1

|ArRkf |∥2L2

) 1
2

.

Plugging in (3.8) with (3.6) and (3.9), as well as using the fact that (a+ b)2 ≲ a2 + b2, gives us

∥ sup
1≤t≤2

|ArRkf |∥L2 ≲

(∑
τ

2 · (2−k( d−1
2 ))2∥f∥2L2

) 1
2

≲ 2−k( d−2
2 )∥f∥L2 . (3.10)

Note that working over intervals of length tτ+1 − tτ is what made the contribution of the derivative in
(3.9) comparable in size to the contribution from (3.6), confirming our Littlewood-Paley heuristic that
ArRkf is controlled over our net. Working over the interval [1, 2] instead of our net would have given us

a worse bound on ∥sup1≤t≤2 |ArRkf |∥L2 by a factor of 2
k
2 .

Interpolating our two bounds for M1
SRk, the L

2 → L2 bound (3.10) and the Lq → Lq bound (3.4) for
some q = 1 + ε, we get by Marcinkiewicz that the the Lp → Lp operator norm of M1

SRk is bounded by

2

(
p

p− (1 + ε)
+

p

2− p

) 1
p

· 2−k(− d
p+d−1)+ kεd

2 ≲ 2−k(− d
p+d−1− εd

2 ).

If we take p > d
d−1 and ε small enough, we see that the exponent above is negative, and so the sum

∞∑
k=2

2−k(− d
p+d−1− εd

2 ).

converges. Therefore, we have proved (3.3), completing the proof that M1
S is Lp → Lp bounded for all

p > d
d−1 .

3.1.3 The general case

Now we work with the entire spherical maximal function MS , which we can write as

MSf = sup
j∈Z

sup
2j≤r≤2j+1

|Arf |.

For every j ∈ Z, we split f into its low and high frequency parts relative to the scale of the annuli the
operator sup2j≤r≤2j+1 |Arf | is averaging over. Letting R≤−jf =

∑
k<−j Rkf , to show that MSf has

bounded Lp → Lp norm, it suffices to show (by the triangle inequality and subadditivity of MS) the
following two bounds:

∥sup
j

sup
2j≤r≤2j+1

|ArR≤−jf |∥ ≤ Cd,p∥f∥Lp(Rd) (3.11)

∥sup
j

sup
2j≤r≤2j+1

|ArR−j+kf |∥Lp(Rd) ≤ Cd,p,k∥f∥Lp(Rd) for k ∈ N, and
∞∑
j=1

Cd,p,k <∞ (3.12)

Note that (3.11) bounds the parts of the Littlewood-Paley decomposition of Arf that oscillate slowly
with respect to the averaging radius, and (3.12) bounds the parts that oscillate quickly with respect to
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the averaging radius. The claim of (3.12), that as k grows much larger than j, the operator norm of
∥supj sup2j≤r≤2j+1 |ArR−j+kf |∥Lp(Rd) decays sufficiently fast, is another instance of the phenomenon of
“almost orthogonality” discussed previously.

Proving (3.11) goes exactly the same as proving (3.2): ArR≤−jf can be written as the convolution of f
with Arφ for a Schwartz function φ independent of f , and by the exact same calculations as earlier we
conclude the pointwise bound

|ArR≤−jf(x)| ≲Mf(x).

This bound holds independently of j ∈ Z and r ∈ [2j , 2j+1], which immediately proves (3.11).

To prove (3.12), we first note that by the exact same argument as in the case of M1
S , we have that for

2j ≤ r ≤ 2j+1,

|ArR−j+kf(x)| ≲ 2kMf(x),

where this constant is independent of r and j. Therefore, we have that for all p ∈ (1,∞),

∥sup
j

sup
2j≤r≤2j+1

|ArR−j+kf(x)|∥Lp ≤ 2k∥f∥Lp . (3.13)

We now need an L2 bound to interpolate against. To do this, we will bound ∥sup2j≤r≤2j+1 |ArR−j+kf(x)|∥L2

and then square sum over j. Again, ArR−j+k can’t oscillate very finely at scales of 2j−k, so we discretize
the supremum sup2k≤r≤2k+1 using a 2j−k-net {tτ}τ < 2j−k (again, a set of points {tτ}τ<2k in [2j , 2j−1]

spaced out on the order of 2j−k). Using the fundamental theorem of calculus identity (3.7) from earlier,
plugging in ϕ(r) = ArR−j+kf(x), and taking L2 norms, we get that∥∥∥∥∥ sup

tτ≤t≤tτ+1

|AtR−j+kf |

∥∥∥∥∥
L2

≲ ∥AtτR−j+kf∥L2 +

∥∥∥∥∫ tτ+1

tτ

∣∣∣∣ ddrArR−j+kf

∣∣∣∣ dr∥∥∥∥
L2

. (3.14)

For 2j ≤ r ≤ 2j+1, by (3.5) and the fact that R̂−j+kf(ξ) is supported on [2−j+k−1, 2−j+k+1], we have
that

∥ArR−j+kf∥L2 = ∥ ̂ArR−j+kf∥L2 = ∥R̂−j+kf(ξ)d̂σ(rξ)∥L2

≲ 2−k(d−1)/2∥R̂−j+kf∥L2 ≤ 2−k(d−1)/2∥R−j+kf∥L2 . (3.15)

Since ( d
drArR−j+kf(ξ))

∧ = ξ·∇d̂σ(rξ)R̂−j+kf(ξ), using (3.5) and the fact that |ξ·∇d̂σ(rξ)| ≤ |ξ||∇d̂σ(rξ)|,
we get that for 2j ≤ r ≤ 2j+1,

∥ d
dr
ArR−j+kf∥L2 = ∥( d

dr
ArR−j+kf)

∧∥L2 = ∥ξ · ∇d̂σ(rξ)R̂−j+kf(ξ)∥L2

≲ 2−j2−k(d−3)/2∥R̂−j+kf∥L2 ≤ 2−j2−k(d−3)/2∥R−j+kf∥L2 .

Therefore, we have the estimate that for tτ , tτ+1 in our 2j−k net of [2j , 2j+1],∥∥∥∥∫ tτ+1

tτ

| d
dr
ArR−j+kf(·)|dr

∥∥∥∥
L2

≲ (tτ+1 − tτ )2
−j2−k( d−3

2 )∥R−j+kf∥L2 ≲ 2−k( d−1
2 )∥R−j+kf∥L2 . (3.16)

Plugging (3.15) and (3.16) into (3.14) gives us that∥∥∥∥∥ sup
tτ≤t≤tτ+1

|AtR−j+kf |

∥∥∥∥∥
L2

≲ 2−k( d−2
2 )∥R−j+kf∥L2 ,

and with this we can calculate that∥∥∥∥∥ sup
2j≤t≤2j+1

AtR−j+kf

∥∥∥∥∥
L2

=

∥∥∥∥∥supτ sup
tτ≤t≤tτ+1

AtR−j+kf

∥∥∥∥∥
L2

≤

(∑
τ

∥ sup
tτ≤t≤tτ+1

AtR−j+kf∥2L2

)1/2

≲

(∑
τ

2−k(d−1)∥R−j+kf∥L2

)1/2

≲ 2−k( d−2
2 )∥R−j+kf∥L2 . (3.17)
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Finally, we can bound ∥supj sup2j≤r≤2j+1 |ArR−j+kf(x)|∥L2 by estimating a supremum in j by a square
sum in j, and using (3.17):

∥sup
j∈Z

sup
2j≤r≤2j+1

|ArR−j+kf |∥L2 ≤

∑
j∈Z

∥ sup
2j≤r≤2j+1

|ArR−j+kf(·)|∥2L2

 1
2

≲

∑
j∈Z

2−k(d−2)∥R−j+kf∥2L2

 1
2

≲ 2−k( d−2
2 )∥f∥L2 . (3.18)

In the last equality, we used the fact that
(∑

k∈Z∥R−j+kf∥L2

) 1
2 = ∥f∥L2 , which follows from Parseval

below: (∑
k∈Z

∥R−j+kf∥2L2

) 1
2

=

∫
Rd

|f̂(ξ)|2
∑
k∈Z

ψ−j+k(|ξ|)2dξ.

Since ψ−j+k is supported in [2−j+k−1, 2−j+k+1], the sum
∑

k∈Z ψ−j+k(|ξ|)2 is at most 2 for any ξ ∈ Rd.
One final application of Parseval gives the desired inequality1.

Interpolating (3.18) with (3.13) using Marcinkiewicz gives us again, that for p > d
d+1 , MS is Lp → Lp

bounded. This completes the proof of Theorem 3.1.

3.2 The Calderón-Zygmund Method of Rotations

Now that we have shown that the spherical maximal function is Lp bounded on Schwartz functions for
p > d

d+1 , i.e. for f ∈ S(Rn),
∥MSf(x)∥Lp(Rd) ≤ Cd,p∥f∥Lp(Rd),

we will show that this constant is in fact independent of dimension d.

Before discussing this argument, we show why independence of the spherical maximal function implies
independence of dimension for the maximal function for the Euclidean ball. Intuitively, these two maxi-
mal functions are related: If the average of |f | on B(x, r) is some value K, then the average value of |f |
on some sphere centered at x and of radius less than r must be at least K. Therefore, we expect to have
the pointwise bound

Mf(x) ≤MSf(x) (3.19)

This is seen rigorously by switching to polar coordinates, where ωd denotes the surface area of Sd.

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy =
1

|B(x, r)|

∫ r

0

ωdr
n−1Arf(x)dr ≤MSf(x)

∫ r

0
ωdr

n−1

|B(x, r)|
=MSf(x).

Taking supremum over r on both sides gives (3.19). Therefore, we will have shown that for a fixed p and
for all Schwartz functions f : Rd → R, ∥Mf∥Lp(Rd) ≤ K∥f∥Lp(Rd) for some constant K independent of d

satisfying p > d
d+1 . Combining this with the fact that the Lp(Rd) operator norm of Mf is bounded for

the finite number of d satisfying p < d
d+1 (as shown by the Vitali covering argument in the introduction)

shows that an Lp bound for the Euclidean maximal function on Schwartz functions f : Rd → R can be
taken independent of d.

We still need to get rid of the Schwartz condition which we needed to use Fourier analysis techniques on
the spherical maximal function. This is easily disposed of using a standard density argument and the
subadditivity of Mf . Since M is a sublinear bounded operator from Lp(Rd) to Lp(Rd), we have that
for a sequence of measurable functions fn converging in Lp to a function f , ∥Mfn∥Lp → ∥Mf∥Lp . Now

1This is one direction of the L2 case of the general Littlewood-Paley inequalities, which states that for any p ∈ (1,∞),

the Lp norm of the square function
(∑

j∈Z(Pjf)
2
)1/2

is up to some constant factor equal to the Lp norm of f . Thus,

Littlewood-Paley theory gives some sense of “orthogonality” that one would a-priori only expect to see in the L2 world.
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taking f to be an arbitrary Lp function, and fn to be a sequence of Schwartz functions approximating
it in Lp norm (since Schwartz functions are dense in Lp), taking limits on both sides of ∥Mfn∥Lp(Rd) ≤
Kp∥fn∥Lp(Rd) allows us to conclude that the Euclidean maximal function is bounded independent of
dimension.

We now proceed to prove that

Theorem 5. For p > d
d+1 , the constants Cp,d in the Lp bounds of the spherical maximal function

can be taken to be independent of d.

From the boundedness of the spherical maximal function, for f : Rd → R we have that ∥MSf∥Lp(Rd) ≤
C(d, p)∥f∥Lp(Rd), for some constant C(d, p) depending on d and p. We would like to find a relation
between C(d, p) and C(d+1, p), namely, show that they can be made equal. To do so, we need a way to
relate the spherical maximal function on Rd to the spherical maximal function on Rd+1. A natural way
to approach this is through the method of rotations: viewing an average over the sphere Sd as taking
averages of all copies of Sd−1 in Sd, and then averaging over these values.

In this manner, for w0 ∈ Sd ⊂ Rd+1, we first let Uω0 ∈ SOd+1 be an orthogonal transformation that
takes the dth standard basis vector ed+1 ∈ Rd+1 to ω0. More specifically, with the canonical embedding
of Rd in Rd+1, Uω0

is an orthogonal transformation that maps Sd−1 ⊂ Rd to the set {x ∈ Sd : x ⊥ ω0}.

Figure 3: Viewing Sd−1 as a subset of Sd

We create a maximal function over Sd−1s about x in the plane Uω0
(Rd) ⊂ Rd+1 as

Mω0

S f(x) := sup
r>0

Aω0
r |f |(x),

where Aω0
r is defined as

Aω0
r f(x) :=

∫
Sd−1

f(x− rUω0
ω)dσd−1(ω).

We note that if ω0 = ed+1, then we can easily compute using Fubini’s theorem that for f : Rd+1 → R,

∥Med+1

S f∥Lp(Rd+1) =

∫
Rd+1

|Med+1

S f |p =

∫
R

∫
Rd

|Med+1

S f(x, y)|pdx dy

=

∫
R
∥Med+1

S f(·, y)∥p
Lp(Rd)

dy ≤
∫
R
C(d, p)p∥f(·, y)∥p

Lp(Rd)
dy

= C(d, p)p∥f∥p
Lp(Rd+1)

.

Since Aω0
r f(x) = A

ed+1
r (f ◦ Uω0)(U

−1
ω0
x), we see that

∥Mω0

S f∥Lp(Rd+1) ≤ C(d, p)∥f ◦ Uω0∥Lp(Rd+1) = C(d, p)∥f∥Lp(Rd+1). (3.20)

The observation that lies at the heart of the “method of rotations” is that an average over an Sd is the
same as an average over all averages of Sd−1s inside Sd. More rigorously:
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Lemma 2. We have the following equality:

Arf(x) =

∫
Sd

Aω0
r f(x)dσd(ω0) (3.21)

Proof. This observation follows from the general fact that given a compact lie group G acting transitively
on a compact manifold M , there exists a unique G-invariant probability measure on M . We fix x and r,
and have SOd+1 act transitively on the sphere x+ rSd. We define the two measures

µ(E) = ArχE(x) =

∫
Sd

χE(x− rω)dσd(ω)

ν(E) =

∫
Sd

Aω0
r χE(x)dσ

d(ω0) =

∫
Sd

∫
Sd−1

χE(x− rUω0
ω)dσd−1(ω)dσd(ω0)

It follows immediately from the monotone convergence theorem that both µ and ν are in fact measures.
It is clear that µ(x + rSd) = ν(x + rSd) = 1 and that both measures are SOd+1 invariant. Therefore,
µ = ν, and integrating f against both of these measures gives the desired result.

Taking supremums over r on both sides of (3.21) gives us that

MSf(x) =

∫
Sd

Aω0
r f(x)dσd(ω0) ≤

∫
Sd

sup
r
Aω0

r f(x)dσd(ω0) =

∫
Sd

Mω0

S f(x)dσd(ω0).

Finally, using Minkowski’s integral inequality and (3.20), we get that

∥MSf(x)∥Lp(Rd+1) ≤
∥∥∥∥∫

Sd

Mω0

S f(x)dσd(ω0)

∥∥∥∥
Lp

≤
∫
Sd

∥Mω
S f∥Lp dσ

d(ω0)

≤
∫
Sd

C(d, p)∥f∥Lp(Rd+1)dσ(ω0) = C(d, p)∥f∥Lp(Rd+1).

This tells us that C(d, p) = C(d+1, p), proving Theorem 5, and by the discussion in the beginning of this
subsection, proves that the Lp norms of the Euclidean maximal function M can be taken independent
of dimension for p ∈ (1,∞].

4 L2 Bounds of Maximal Functions for Convex Bodies

Once Stein and Strömberg settled the independence of dimension for the maximal function over the ball
in Rd with respect to the ℓ2 norm. The natural follow up question is does this independence of dimension
remain if we replace the ℓ2 ball with unit balls with respect to other ℓp norms, for p ∈ [1,∞]? More
generally, if we choose an arbitrary convex body B in Rd of volume 1, fix p ∈ (1,∞] and consider the
maximal function

Mf =MBf = sup
r>0

1

VoldrB

∫
rB

|f(x− y)|dy

where rB = r · B, is it true that the Lp operator norm of MB is independent of both the dimension n
and the convex body B? Bourgain and Carbery showed that the answer is yes, but were only able to
show this for p > 3

2 . In the following two sections, we will explain the proof of this claim, and see where
the obstruction at 3

2 arises. As before, the proof will boil down to obtaining an L2 → L2 bound for MB

(and then interpolating with the trivial L∞ → L∞ bound), and interpolating this against an Lp → Lp

for MB . Throughout this section, we will derive an L2 bound of MB independent of dimension and the
convex body B following Bourgain’s paper [Bou86a].

We first work to set up the general framework around the maximal function MB . For a general L1

function K : Rd → R, we can write

(f ∗K(t))(x) = (f∨K∨
[t])

∧ =

∫
Rd

f̂(−ξ)K̂[t](−ξ)e−2πix·ξdξ =

∫
Rd

f̂(ξ)K̂(tξ)e2πix·ξdξ.

Now, fixing a convex body B ⊂ Rd of volume 1, we write, by change of variables,

(VoldtB)−1

∫
tB

|f(x− y)|dy = (VoldB)−1

∫
tB

t−d|f(x− y)|dy = f ∗ (χB)(t).
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In this way, we may write the maximal operator MB as the supremum of convolution operators

MBf = sup
t>0

f ∗ (χB)(t).

Our goal is to bound the L2 operator norm of the family of operators above independent of B and the
dimension of the space it lives in. Just as in the proof of the independence of dimension on the spherical
maximal function, we will use Littlewood-Paley theory to analyze this operator. Similarly to Stein’s
proof previously, we will obtain a bound on this operator norm as a function of the quantities

αj = sup
2j≤t≤2j+2

|K̂(ξ)| and βj = sup
2j≤t≤2j+2

|⟨∇K̂(ξ), ξ⟩|. (4.1)

In the case of the spherical maximal inequality, we had decay of the symbol of the maximal operator due
to Bessel function estimates, which utilize the geometry of the sphere. Here, we’ll need to make use of
the convexity of B in order to argue that the αj , βj are sufficiently small.

4.1 A general Littlewood-Paley bound

In this subsection, we will apply the Littlewood-Paley theory techniques from Stein’s Spherical Maximal
Theorem to a more general setting, for our general use later.

Theorem 6. Consider K ∈ L1(Rd) and define αj and βj as in (4.1) above. Then for any
f ∈ S(Rd), there exists some universal constant C such that

∥sup
t>0

|f ∗K(t)|∥L2 ≤ CΓ(K)∥f∥L2 ,

where we define
Γ(K) =

∑
j∈Z

α
1
2
j (α

1
2
j + β

1
2
j ).

Proof. While the calculations for this proof become a bit messy, the ideas follow the same general
Littlewood-Paley principles, but with decomposing the convolution kernel K rather than the input
function f .

� We decompose K with a Littlewood-Paley decomposition into
∑

j∈Z kj

� We break up the supremum over t into the supremum over dyadic intervals

� We discretize the supremum sup2v≤t≤2v+1 f ∗ (kj)(t) over points spaced out by distances where
(kj)(t) is controlled

We create our Littlewood-Paley decomposition of K in the following way: let {ηj}∞j=1 be a partition of

unity of R>0, such that ηj is supported in [2j , 2j+2], 0 ≤ ηj ≤ 1, and |η′j | ≤ C2−j . With this, we define

kj to be the Fourier localizations of K onto an annulus of inner radius 2j and outer radius 2j+2, i.e.

k̂j(ξ) = ηj(|ξ|)K̂(ξ).

Now by the triangle inequality,

∥sup
t>0

|f ∗K(t)|∥L2 ≤
∑
j

∥sup
t>0

|f ∗ (kj)(t)|∥L2 .

We fix a j, and split our supremum into dyadic intervals by square summing the supremum in v below.

∥sup
t>0

|f ∗ (kj)(t)|∥L2 = ∥sup
v∈Z

sup
2v≤t≤2v+1

|f ∗ (kj)(t)|∥L2

≤

∥∥∥∥∥∥
[∑
v∈Z

sup
2v≤t≤2v+1

|f ∗ (kj)(t)|2
]1/2∥∥∥∥∥∥

L2

=

[∑
v∈Z

∥ sup
2v≤t≤2v+1

|f ∗ (kj)(t)|∥2L2

]1/2
. (4.2)
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We are left to analyze the behavior of

∥ sup
2v≤t≤2v+1

|f ∗ (kj)(t)|∥L2 . (4.3)

We first express f ∗ (kj)(t) explicitly for 2v ≤ t ≤ 2v+1:

∣∣f ∗ (kj)(t)(x)
∣∣ = ∣∣∣∣∫

Rd

f̂(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣
Since k̂j(ξ) is supported in [2j , 2j+2], and 2v ≤ t ≤ 2v+1, we can replace f̂(ξ) with f̂j−v(ξ), where we
define for m ∈ Z,

f̂m(ξ) = f̂(ξ)χ|ξ|∈[2m−1,2m+2].

Now we are tasked with understanding the behavior of

sup
2v≤t≤2v+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣ .
As discussed before, we discretize this sum, but we will leave the spacing in our net ambiguous and
choose it at the end. We note that the differing treatments that we did for low and high frequencies in
Stein’s theorem will be taken care of through this spacing (which we can do since we’re only working in
the L2 case). We fix an integer Aj ≥ 1 and a v, and we consider a (2vA−1

j )-net {tτ}τ≤Aj
of [2v, 2v+1].

Again, this net is just a set of Aj points {t1, t2, . . . , tAj}, where tτ and tτ+1 are spaced out on the order

of 2vA−1
j from each other.

We recall the fundamental theorem of calculus identity (3.7). Plugging in
∣∣∣∫Rd f̂j−v(ξ)k̂j(tξ)e

2πix·ξdξ
∣∣∣

for ϕ and tτ , tτ+1 for s1, s2 in the identity, we get that

sup
tτ≤t≤tτ+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣
≤
∣∣∣∣∫

Rd

f̂j−v(ξ)k̂j(tτξ)e
2πix·ξdξ

∣∣∣∣+ ∫ tτ+1

tτ

∣∣∣∣ dds
∫
Rd

f̂j−v(ξ)k̂j(sξ)e
2πix·ξdξ

∣∣∣∣ ds.
We note that the derivative of k̂j(sξ)e

2πix·ξ with respect to s is ⟨∇k̂j(sξ), ξ⟩, which is L1. By the mean
value theorm and the Lebesgue dominated convergence theorem, we can pull the derivative into the
integral. This gives us that

sup
tτ≤t≤tτ+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣
≲

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tτξ)e
2πix·ξdξ

∣∣∣∣+ [∫ tτ+1

tτ

∣∣∣∣∫
Rd

f̂j−v(ξ)⟨∇k̂j(sξ), ξ⟩e2πix·ξdξ
∣∣∣∣ ds] . (4.4)

Now we break up a supremum over [2v, 2v+1] as

sup
2v≤t≤2v+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣ = sup
τ

sup
tτ≤t≤tτ+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣ .
Plugging (4.4) into the above expression, dominating the supremum over τ with an ℓ2 norm over τ , and
putting everything past (4.3) together, we get that∥∥∥∥∥ sup

2v≤t≤2v+1

|f ∗ (kj)(t)|

∥∥∥∥∥
L2

=

∥∥∥∥∥supτ sup
tτ≤t≤tτ+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣
∥∥∥∥∥
L2

≤

∑
τ

∥∥∥∥∥ sup
tτ≤t≤tτ+1

∣∣∣∣∫
Rd

f̂j−v(ξ)k̂j(tξ)e
2πix·ξdξ

∣∣∣∣
∥∥∥∥∥
2
 1

2

≤

(∑
τ

[∥∥∥∥∫
Rd

f̂j−v(ξ)k̂j(tτξ)e
2πix·ξdξ

∥∥∥∥2
L2

+

∥∥∥∥∫ tτ+1

tτ

∣∣∣∣∫
Rd

f̂j−v(ξ)⟨∇k̂j(sξ), ξ⟩e2πix·ξdξ
∣∣∣∣ ds∥∥∥∥2

L2

]) 1
2

. (4.5)
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Using Parseval, we estimate∥∥∥∥∫
Rd

f̂j−v(ξ)k̂j(tτξ)e
2πix·ξdξ

∥∥∥∥
L2

= ∥fj−v ∗ (kj)(tτ )∥L2 = ∥f̂j−v(ξ)k̂j(tτξ)∥L2 ≤ ∥k̂j∥∞∥fj−v∥L2 . (4.6)

And using the same Parseval trick with Minkowski’s integral inequality,∥∥∥∥∫ tτ+1

tτ

∣∣∣∣∫
Rd

f̂j−v(ξ)⟨∇k̂j(sξ), ξ⟩e2πix·ξdξ
∣∣∣∣ ds∥∥∥∥ =

∫ tτ+1

tτ

∥∥∥∥∫
Rd

f̂j−v(ξ)⟨∇k̂j(sξ), ξ⟩e2πix·ξdξ
∥∥∥∥ ds

≤
∫ tτ+1

tτ

∥⟨∇k̂j(sξ), ξ⟩∥∞∥fj−v∥L2ds ≤ 2vA−1
j ∥fj−v∥L2 sup

tτ≤t≤tτ+1

∥⟨∇k̂j(tξ), ξ⟩∥∞. (4.7)

Plugging (4.6) and (4.7) into (4.5) finally gives us that

∥ sup
2v≤t≤2v+1

|f ∗ (kj)t|∥L2 ≤ A
1
2
j (∥k̂j∥∞∥fj−v∥L2 + 2vA−1

j ∥fj−v∥L2 sup
2v≤t≤2v+1

∥⟨∇k̂j(tξ), ξ⟩∥∞)

≤ A
1
2
j ∥fj−v∥L2(∥k̂j∥∞ +A−1

j ∥⟨∇k̂j(ξ), ξ⟩∥∞),

where the last step follows by bringing the 2v into the inner product. We plug this result into (4.2) to
get that

∥sup
t>0

|f ∗ (kj)(t)|∥L2 ≤ ∥f∥L2(A
1
2
j ∥k̂j∥∞ +A

− 1
2

j ∥⟨∇k̂j(ξ), ξ⟩∥∞).

The chain rule tells us that ⟨∇k̂j(ξ), ξ⟩ = ⟨∇K̂j(ξ), ξ⟩ηj(|ξ|)+ ⟨K̂j(ξ), ξ⟩η′j(|ξ|)
ξ
|ξ| ≤ C(αj +βj), since we

created ηj to control its derivative. If we pick Aj = (αj + βj)α
−1
j , we conclude that

∥sup
t>0

|f ∗K(t)|∥L2 ≤ C

∑
j∈Z

α
1
2
j (αj + βj)

1
2

 ∥f∥L2 .

4.2 Making use of convexity

In order to use Theorem 6 toward proving an L2 bound on MB , we need to argue that the αj , βj
corresponding to χ̂B (the convolution kernel associated to the maximal function MB) are sufficiently
small. As mentioned before, in Stein’s Spherical Maximal Theorem, this quantity was bounded using the
geometry of the sphere. In our current case, we will see that a strong understanding of χ̂B will follow
from an understanding of the volumes of the cross sections of B.

The key idea behind why we want to this is comes from the following observation: Our end goal is to
understand the Fourier transform of χB , where B is a symmetric convex body. Then we are trying to
control the integral

χ̂B(ξ) =

∫
B

e−2πix·ξdx.

Let’s fix a ξ ∈ Rd, and use Fubini to turn this integral into a double integral, integrating in both the ξ
direction and in the hyperplane perpendicular to ξ. We note that frequencies oscillating in the ξ direction
are going to be constant on hyperplanes perpendicular to ξ, since the inner product in the exponential
is zero. Therefore, we can reduce the Fourier transform of χB to the one-dimensional integral dependent
on the d− 1-dimensional volume of cross sections of B perpendicular to ξ.

We give a brief overview of the convex geometry results that we’ll use before moving on to their applica-
tions. Again, we assume that we are working with a symmetric convex body B ∈ Rd with Vold(B) = 1.
Then for ξ on the (ℓ2) unit ball of Rd, we define the function φξ : R → R as

φξ(u) = Voln−1{x ∈ B : ⟨x, ξ⟩ = u}

We note that the hyperplane Hξ,u = {x ∈ Rd : ⟨x, ξ⟩ = u} is a translate of the d−1 dimensional subspace
orthogonal to ξ by the vector uξ, so Voln−1{x ∈ B : ⟨x, ξ⟩ = u} is the cross sectional volume of B sliced
by the hyperplane Hξ,u.

We quickly prove some simple properties of φξ:

18



Lemma 3. For B ⊂ Rd a symmetric convex body, the function φξ is decreasing on [0,∞), and

(φξ)
1

d−1 is concave outside of the region where φξ = 0.

Proof. Concavity follows from the standard Brunn-Minkowski inequality: take a, b ∈ R, and take any
0 ≤ p ≤ 1. Then since pHξ,a + (1− p)Hξ,b ⊂ Hξ,pa+(1−p)b by convexity, we have that

(φξ(pa+ (1− p)b))
1

d−1 = Voln−1(Hξ,pa+(1−p)b)
1

d−1 ≥ Voln−1(pHξ,a + (1− p)Hξ,b)
1

d−1

≥ Voln−1(pHξ,a)
1

d−1 +Voln−1((1− p)Hξ,b)
1

d−1 ≥ p(φξ(a))
1

d−1 + (1− p)(φξ(b))
1

d−1 .

Since φξ is an even function, we conclude that φξ is decreasing on [0,∞).

As discussed before, we want some uniform bound on the volumes of the cross sections of B. We would
hope for a statement that says cross sections of B are “the same” up to some universal constant, i.e.
there are constants L(B) (depending on B) and C (independent of B) such that for all ξ ∈ Sd−1,

1

C
≤ L(B) ·Vold−1(x ∈ v(B) : ⟨x, ξ⟩ = 0) ≤ C

However, this is too strong to hope for. For instance, take a family of very long, skinny cylinders Bt in
Rd, of length td−1 and cross sectional diameter C

t , where C is chosen so that each circular cross section
has d− 1 dimensional volume 1

td−1 . This is illustrated in the figure below.

Figure 4: A family of cylinders whose largest to smallest cross section ratio goes to infinity

A horizontal slice of Bt gives us a cylinder one dimension lower, whose volume is on the order of t (since
this is a cylinder of length td−1 whose cross sections are d − 2 dimensional spheres of radius t). Yet, a
vertical slice of Bt gives us a d− 1 dimensional sphere whose volume is on the order of 1

td−1 .

This result is true through if we allow ourselves to scale B by some linear transformation, that Bourgain
credits to Milman.

Lemma 4. There is a v ∈ SL(Rd) and some constant L depending on B such that for all ξ ∈ Sd

and some universal constant C,

1

CL
≤ Vold−1(x ∈ v(B) : ⟨x, ξ⟩ = 0) ≤ C

L

In other words, given any convex body B, there exists some determinant 1 linear transformation v such
that once we apply it to B, all of B’s cross sections have essentially the same volume (up to a constant
independent of B or the dimension)2. In the above Lemma, we can take v ∈ SL(Rd) to be such that
v(B) is in isotropic position, meaning that for all ξ ∈ Rd,∫

v(B)

|⟨x, ξ⟩|2dx = L2∥ξ∥22. (4.8)

2In fact, Lemma 4 actually holds without the constant L; that is, there exists a universal constant C such that for any
convex body B ⊂ Rd of volume 1, there exists a linear transformation v ∈ SLn(R) such that all cross sections of v(B) are
bounded below by 1

C
and above by C, where C is independent of dimension and the convex body! This statement, known

as the Bourgain Slicing Conjecture, was proven by Klartag and Lehec in 2022 (see [KL22])
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Such a v can be found as
∫
B
|⟨x, ξ⟩| is a positive definite quadratic form, hence is equivalent under SL(Rd)

to a constant multiple the identity quadratic form ∥ξ∥2. The unique L in (4.8) is called the isotropy
constant of B.

We note that by a simple change of variables, and the fact that Voldv(B) = VoldB since v ∈ SL(Rd),

Mv(B)f(x) = sup
t>0

(Voldv(B))−1

∫
tv(B)

t−d|f(x− y)|dy

= sup
t>0

(VoldB)−1

∫
B

t−d|(f ◦ v)(v−1x− y)|dy =MB(f ◦ v)(v−1x).

From here it is immediate that ∥MBf∥L2 = ∥Mv(b)f∥L2 . Therefore, to show that MB is bounded
independent of dimension, we may assume that B is in isotropic position. We will make use of this in
the next subsection.

4.3 The Poisson Kernel Trick

We apply the general Littlewood-Paley bounds from Theorem 6 to MB , the convolution operator with
kernel χB . To show that MB is bounded independent of dimension and B, we need to show that for

αj = sup
2j≤t≤2j+2

|χ̂B(ξ)| βj = sup
2j≤t≤2j+2

|⟨∇χ̂B(ξ), ξ⟩|,

the sum ∑
j∈Z

α
1
2
j (α

1
2
j + β

1
2
j )

is bounded by a constant independent of B or the dimension of Rd. To do so, as discussed before we
first bound χ̂B(ξ) in terms of it’s cross-sectional volumes, where we may crucially assume that B is in
isotropic position (by applying v ∈ SL(Rd)) and thus satisfies the conclusion of Lemma 4. For any
ξ ∈ Rd − {0}, let ν denote the unit normal in the direction of ξ, and let |ξ| denote the magnitude (ℓ2

norm) of ξ. By Fubini and change of coordinates, splitting an integral over Rd into an integral over
hyperplanes perpendicular to ν, we get that

χ̂B(ξ) =

∫
B

e−2πix·ξdx =

∫
R
φν(u)e

−2πi|ξ|udu =

∫
R
φν(u)e

2πi|ξ|udu,

where the last equality follows from the fact that B is symmetric about the origin, so φ is even. Since φ
is an even function and sin is odd, we note that the imaginary part of this last integral is zero, leaving
us with

χ̂B(ξ) =

∫
R
φν(u) cos(2π|ξ|u)du.

By integration by parts, and the fact that φν is compactly supported,

|χ̂B(ξ)| =
∣∣∣∣∫

R
φν(u) cos(2π|ξ|u)du

∣∣∣∣ = ∣∣∣∣∫
R
φ′
ν(u) cos(2π|ξ|u)du

∣∣∣∣ ≤ ∫
R
|φ′

ν(u)|du.

Since φ is even and positive we have that

C

|ξ|

∫
R
|φ′

ν(u)du| =
2C

|ξ|

∫
R≤0

φ′
ν(u)du =

2C

|ξ|
φ(0) ∼ 1

|ξ|
L−1.

So in conclusion, we have that

|χ̂B(ξ)| ≲
1

|ξ|
L−1. (4.9)

However, this bound happens to not be strong enough, since we get that

αj ≤ sup
2j≤t≤2j+2

1

|ξ|
L−1 =

1

2jL
,
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which as j goes to −∞, causes αj to blow up. The issue is more fundamental that this: for Theorem 6
to be useful out of the box, we need χ̂B(ξ) to go to zero as |ξ| goes to zero, but this isn’t the case: we
estimate |1− χ̂B(ξ)|, by noting that

1− χ̂B(ξ) =

∫
B

(1− e2πix·ξ)dx =

∫
R
φν(u)(1− cos(2π|ξ|u))du.

We have again by integration by parts that

|1− χB | ≤ C

∫
R
φν(u)|u||ξ| ≤ C2|ξ|L. (4.10)

This tells us that χ̂B(ξ) goes to 1 as |ξ| → 0, and so our sum in αj cannot converge as j → −∞.
Bourgain’s insight was to not bound χ̂B directly with the estimates in Theorem 6, but to instead bound
(χB − T )∧ for T an operator such that

1. The maximal operator supt>0 |T(t) ∗ f | is L2 bounded

2. The Fourier transform T̂ (ξ) goes to 1 as |ξ| → 0

For our operator T , we choose the Poisson kernel PL, with L the isotropy constant of B, defined on the
Fourier side by

P̂L(ξ) = e−2πL|ξ|

It is clear that P̂L(ξ) → 1 as |ξ| → 0. The fact that the maximal operator supt>0 Tt is L2 bounded
follows from the semigroup maximal theorem below.

For a fixed p ∈ [1,∞], a semigroup of operators is a one-parameter family of Lp operators {Tt}t∈R≥0
that

is a semigroup, i.e.

� Tt1 ◦ Tt2 = Tt1+t2

� T0 = Id

We have the following maximal theorem for semigroups satisfying the following axioms (known as sym-
metric diffusion semigroups):

Theorem 7. (The General Semigroup Maximal Theorem in Rd)
Consider a semigroup {Tt}t∈R>0

of Lp(Rd) operators that satisfies the following axioms:

1. Tt is a contraction, i.e. ∥Ttf∥p ≤ ∥f∥p

2. Tt is symmetric, i.e. is a self-adjoint operator on L2(Rd)

3. Tt is positive, i..e Ttf ≥ 0 if f ≥ 0

4. limt→0∥Ttf∥L2 = ∥f∥L2

5. Tt1 = 1

Then the maximal function MT (f) = supt>0 |Ttf(x)| is bounded as an operator from Lp → Lp by
some constant Ap independent of the dimension Rd.

Proof. See page 73 of [Ste70].

Clearly, the family Tt = (PL)(t) for t > 0 is a semigroup satisfying all of the properties above. Using
this, we apply the general Littlewood-Paley theory estimates from Theorem 6 to K = χB − PL, where
L = L(B) is the isotropy constant of B, instead of applying it directly to χB . If we’re able to show that
independent of dimension and choice of B,

∥sup
t>0

|f ∗K(t)|∥2 ≤ C∥f∥2,

it immediately follows from the triangle inequality and the maximal theorem for semigroups that MB is
bounded independent of B and the dimension d.
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To show such a C exists, it remain to compute the αi, βi in Theorem 6 for K. We first obtain a bound
on |⟨∇χ̂B(ξ), ξ⟩|. Since the derivative e2πix·ξ is integrable on B, by Lebesgue Dominated Convergence
and the mean value theorem we get that

⟨∇χ̂B(ξ), ξ⟩ = ⟨
∫
B

∇ξe
2πix·ξdx, ξ⟩ = ⟨

∫
B

2πixe2πix·ξdx, ξ⟩ = C

∫
B

⟨x, ξ⟩e2πix·ξdx.

Again by Fubini and change of coordinates, we get∫
B

⟨x, ξ⟩e2πix·ξdx =

∫
R
u|ξ|φα(x)e

2πiu|ξ|du,

and integrating by parts twice gives us

|⟨∇χ̂B(ξ), ξ⟩| ≤ C

∫
R
|(uφ(u))′|du ≤ C1

(∫
R
φ(u)du+

∫
R
|uφ′(u)|du

)
≤ 2C1. (4.11)

By (4.11), |⟨∇χ̂B(ξ), ξ⟩| is uniformly bounded by a constant. Since |⟨∇P̂L(ξ), ξ⟩| is uniformly bounded
by a constant as well, we have that βj is uniformly bounded in j. To bound αj , we work in the two
regimes 2j ≤ L−1 and 2j ≥ L−1.

� In the regime 2j ≤ L−1,

αj = sup
2j≤|ξ|≤2j+2

| ̂(χB − PL)(ξ)| ≤ sup
2j≤|ξ|≤2j+2

(|1− χ̂B(ξ)|+ |1− P̂L(ξ)|)

≲ 2jL+ (1− e−2π2j+2L) ≲ 2jL

� In the regime 2j ≥ L−1,

αj = sup
2j≤|ξ|≤2j+2

(|χ̂B(ξ)|+ |P̂L(ξ)|) ≲ 2−jL−1 + e−2πL2j ≲ 2−jL−1

From here, it is clear that the sum
∑

j∈Z α
1
2
j (α

1
2
j + β

1
2
j ) converges to a value independent of L, and we

conclude the proof that MB is strong (2, 2) bounded independent of B and the dimension of Rd.

5 Lp Bounds of Maximal Functions for Convex Bodies

From the obvious L∞ bound on MB independent of dimension and B, interpolation with the dimension-
free L2 bounds for MB just proved give dimension-free Lp boundedness of MB independent of B for
p ≥ 2. The same argument for the Euclidean maximal function shows that MB is not L1 for any convex
body B, but it remains to understand what happens in the regime p ∈ (1, 2). Shortly after Bourgain
proved the dimension-free L2 bounds for MB in the previous section, both Bourgain ([Bou86b]) and
Carbery ([Car86]) independently extended this result to Lp for p > 3

2 .

Bourgain’s approach to p > 3
2 analyzes the dyadic maximal operator associated to B ⊂ Rd:

MB,1f(x) = sup
j∈Z

1

Vold(B)

∫
B

|f(x− 2jy)|dy.

This object is more convenient to study than the standard maximal function, since we are taking a discrete
supremum rather than an continuous one, although it is clear that Lp boundedness of MB,1 is weaker
than that of MB . To analyze this object, Bourgain considers the vector-valued operator fj ∗ (χB)(2j),
which takes in a sequence of functions (fj)j∈Z and outputs the sequence of functions (fj ∗ (χB)(2j))j∈Z.
By studying the Lp(ℓq) norms of this vector-valued operator, i.e the constants A(p, q) such that∥∥∥∥∥∥∥

∑
j

(fj ∗ (χB)(2j))
q

 1
q

∥∥∥∥∥∥∥
Lp

≤ A(p, q)

∥∥∥∥∥∥∥
∑

j

(fj)
q

 1
q

∥∥∥∥∥∥∥
Lp

,
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vector-valued interpolation and Fourier analysis leads to the result that A(p,∞) <∞ for all p ∈ (1,∞).
This immediately implies the result that for all p ∈ (1,∞), there exists a C such that

∥MB,1f(x)∥Lp ≲p C∥f∥Lp .

Bourgain then presents a short lemma that allows one to relate the norms of MB,1 with MB , which is
only strong enough to obtain Lp bounds ofMB independent of dimension and B for p > 3

2 . Interpolating
this result with Bourgain’s L2 estimates in the previous section gives Lp boundedness ofMB independent
of dimension and B for all p > 3

2 .

In this section, we choose to exposit Carbery’s argument ([Car86]) in full rather than Bourgain’s. This
is primarily due to the fact that future work in the area of maximal functions build on the framework
developed in Carbery’s article, in particular Müller’s independence of dimension result in 1990 for the
maximal function associated to ℓq balls for q ∈ [1,∞), and Bourgain’s analogous result in 2014 for the
case q = ∞. Along with Carbery’s original paper, we also draw from material in a survey by Deleaval,
Guedon, and Maurey, particularly Chapters 6 and 7 ([LM18]).

In Carbery’s approach, an interpolation approach to maximal operators between Lp and L2 is introduced,
that rather than requiring equal strength in both bounds on MB , requires more strength on the L2 side
and less strength on the Lp side. The required estimates needed to apply this interpolation will arise as
consequences of boundedness of fractional derivatives, which we will discuss later in this section.

5.1 Carbery’s Maximal Function Interpolation

Given a family of linear operators Tjv indexed for j ∈ Z and v any indexing set, and Rk for k ∈ Z
some Littlewood-Paley decomposition of R>0, we consider the corresponding maximal operator T∗ =
supj supv |Tjvf |. The maximal function we are looking to show Lp boundedness for, supt>0(χB−PL)(t)∗f
with B a symmetric convex body of volume 1 and L it’s isotropy constant, fits into this framework by
setting Tjvf = (χB − PL)(2jv) ∗ f for j ∈ Z and v ∈ [1, 2]3.

We say this family is strongly bounded on Lp with respect to the Littlewood-Paley decomposition Rk if

∥sup
j

sup
v

|TjvRj+kf |∥Lp ≤ ak∥f∥Lp ,where
∑
k∈Z

atk <∞ for all t ∈ (0, 1]

Strong boundedness implies boundedness for the maximal operator T∗ by the triangle inequality. In our
setting, Tjvf = (χB − PL)(2jv) ∗ f , strong boundedness is asking that as the scale of frequencies f is
localized at differs more and more from the spatial scale Tjv is averaging on, ∥Tjvf∥Lp should decay
sufficiently fast. This is another reflection of the almost-orthogonality principal of Littlewood-Paley
theory. We note that both the techniques of the spherical maximal theorem and Bourgain’s dimension-
free L2 bounds have not produced strong L2 boundedness for their corresponding families of maximal
operators.

We say that the family of operators Tjv is weakly bounded on Lp with respect to the Littlewood-Paley
decomposition Rk if

sup
k
∥sup

j
sup
v

|TjvRj+kf |∥Lp ≤ C∥f∥Lp

Again, in our setting, Tjvf = (χB − PL)(2jv) ∗ f , being weakly bounded is asking that no matter the
difference between the scales Tjv is averaging on and the frequencies of f are localized at, Tjvf is never
“too large.” It is easy to check that boundedness of T∗ implies weak boundedness of the family Tjv.

We have the following interpolation result between strong and weak bounds of a family of linear operators:

Lemma 5. For q0 < q < q1, if the family of linear operators Tjv is strongly bounded on Lq0 and
weakly bounded on Lq1 , then Tjv is bounded on Lq for all q ∈ (q0, q1), with constant independent
of dimension.

3We keep the Poisson term in our convolution kernel to aid in our estimates later
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Proof. We fix a q ∈ (q0, q1). For each k, we use Marcinkiewicz interpolation on each of the sublinear

operators supj supv |TjvRj+k| to get that for α =
1
q0

− 1
q

1
q0

− 1
q1

and ak independent of dimension,

∥sup
j

sup
v

|TjvRj+kf |∥Lq ≲q a
α
k∥f∥Lq

Since α ∈ (0, 1), strong boundedness gives us that
∑

k∈Z a
α
k < ∞. Then by the triangle inequality, we

conclude that
∥sup

j
sup
v

|Tjv|∥q→q ≤
∑
k∈Z

∥sup
j

sup
v

|TjvRj+k|∥q→q <∞

Carbery’s main proposition in his paper is a collection of weaker conditions that allows one to do an
interpolation argument as above. To prove T∗ is Lq bounded for q ∈ (q0, q1), we will need to show that
Tjv is a strongly Lq1 bounded family of operators, but we can get away with less than weak boundedness
for the control we need in Lq0 . The statement of the Theorem below is slightly less general than Carbery’s
statement in [Car86], but it is all that will be used in this exposition.

Theorem 8. (Carbery’s Interpolation Theorem) Suppose q ∈ (1, 2), Tjv is a family of linear
operators on measurable functions from Rd to R, and Rk is a Littlewood-Paley decomposition. If
we have that

1. T∗ is essentially positive, i.e. Tjv = Ujv − Sjv, with Ujv, Sjv a family of positive operators,
and for all r ∈ (q, 2], S∗ is Lr bounded by a constant Kr

2. For all r ∈ (q, 2], we have that

∥(
∑
k∈Z

|Rkf |2)
1
2 ∥Lr ≤ C ′

r∥f∥Lr

3. T∗ is strongly bounded on L2 by some constant K

4. For all r ∈ (q, 2], we have that

sup
j
∥sup

v
|Tjvf |∥Lr ≤ Cr∥f∥Lr

Then in fact T∗ is Lp bounded for all p ∈ (q, 2], with operator norm bounded above as a function
of Kr,K,Cr, C

′
r

Proof. We fix a p ∈ (q, 2). To show that T∗ is Lp bounded, we first consider a truncated version of this

operator, denoted as T
(N)
∗ , where we take the supremum of Tjv over all v but only over j ∈ Z∩ [−N,N ].

For a fixed N we get that

∥T (N)
∗ ∥p = ∥ max

j∈Z∩[−N,N ]
sup
v
Tjv∥p ≤

∥∥∥∥∥∥∥
 N∑

j=−N

(sup
v
Tjv)

p

 1
p

∥∥∥∥∥∥∥
Lp

≤ (2N)
1
p ∥sup

v
Tjv∥p ≤ A(N)∥f∥p.

We will show that this constant A(N) above is in fact independent of N , and thus we can take a limit
in N to conclude that T∗ is Lp bounded.

We fix r0, r1 such that q < r0 < r1 < p < 2. We also define a vector-valued version of the op-
erator supv |Tjvf |, which takes in a sequence of functions (gj)j∈Z∩[−N,N ] and outputs the sequence
(supv |Tjvgj |)j∈Z∩[−N,N ]. We will study Ls(ℓt) estimates of this vector-valued operator. We have that
when when s = t = r0,
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∥∥∥∥∥∥∥∥sup
v

|Tjvgj |
∥∥∥∥
ℓr0

∥∥∥∥
Lr0

=

∥∥∥∥∥∥∥
 N∑

j=−N

sup
v

|Tjvgj |r0
 1

r0

∥∥∥∥∥∥∥
Lr0

=

 N∑
j=−N

∥sup
v

|Tjvgj |∥r0Lr0

 1
r0

≤

 N∑
j=−N

(Cr0)
r0∥gj∥r0

 1
r0

= Cr0∥∥gj∥ℓr0∥Lr0 .

We now consider s = ∞, t = r1. We make the following decomposition of Tjv,

sup
j∈Z∩[−N,N ]

sup
v

|Tjvgj | ≤ sup
j∈Z∩[−N,N ]

sup
v

|Sjvgj |+ sup
j∈Z∩[−N,N ]

sup
v

|Ujvgj |

where we treat S and U as vector-valued. If we let g = supj∈Z∩[−N,N ] |gj | and consider a sublinear
positive operator W , we note that |Wgj | ≤ W |gj | ≤ Wg. Since S is sublinear as a supremum of linear
operators, we get that∥∥∥∥∥∥∥∥sup

v
|Sjvgj |

∥∥∥∥
ℓ∞

∥∥∥∥
Lr1

= ∥ sup
j∈Z∩[−N,N ]

sup
v

|Sjvgj |∥Lr1 ≤ ∥sup
v

|Sjvg|∥Lr1 ≤ Kr1∥g∥Lr1 .

Using the fact that U is sublinear as well, we get that∥∥∥∥∥∥∥∥sup
v

|Ujvgj |
∥∥∥∥
ℓ∞

∥∥∥∥
Lr1

= ∥ sup
j∈Z∩[−N,N ]

sup
v

|Ujvgj |∥Lr1 ≤ ∥sup
v

|Ujvg|∥Lr1

≤ ∥sup
v

|Sjvg|∥Lr1 + ∥sup
v

|Tjvg|∥Lr1 ≤ (Kr1 + ∥T (N)
∗ ∥Lr1 )∥g∥Lr1 .

We conclude that∥∥∥∥∥∥∥∥sup
v

|Tjvgj |
∥∥∥∥
ℓ∞

∥∥∥∥
Lr1

∥ sup
j∈Z∩[−N,N ]

sup
v

|Sjvgj∥Lr1 ≤ (2Kr1 + ∥T (N)
∗ ∥Lr1 )∥g∥Lr1 .

We now apply the vector-valued Marcinkiewicz interpolation theorem (a corollary of the standard
Marcinkiewicz interpolation, see for instance Exercise 4.5.3 in [Gra14]). We interpolate our Lr0(ℓr0)
and Lr1(ℓ∞) bounds to get that supv |Tjvgj | is Lr2(ℓ2) bounded for some r2 ∈ (r0, r1), with constant

K ′(2Kr1 + ∥T (N)
∗ ∥)α for K ′ some constant depending on r1, r0, and α < 1.

Now we set gj to Rj+k, to get that

∥∥∥∥ max
j∈Z∩[−N,N ]

sup
v

|TjRj+kf |
∥∥∥∥
Lr

≤

∥∥∥∥∥∥
N∑

j=−N

(
sup
v

|TjRj+kf |2
) 1

2

∥∥∥∥∥∥
Lr

≤ K ′(2Kr1 + ∥T (N)
∗ ∥)α

∥∥∥∥∥∥∥
 N∑

j=−N

Rj+kf

 1
2

∥∥∥∥∥∥∥
Lr

≤ C ′
rK

′(2Kr1 + ∥T (N)
∗ ∥)α∥f∥Lr .

We therefore conclude that T
(N)
∗ is weakly bounded as a family of Lr2 operators. Using Condition 3 of

the theorem and Lemma 5 we get that T
(N)
∗ is Lp bounded for our distinguished p fixed in the beginning

of the proof, with constant

∥T (N)
∗ ∥Lp ≤ D1(D2 +D3∥T (N)

∗ ∥Lp)α
′

for α′ < 1, and D1, D2, D3 all independent of N . Therefore, it is clear that we can take a bound for

∥T (N)
∗ ∥Lp indepdendent of N .

Since for a fixed f , T
(N)
∗ f is an increasing sequence of positive functions that pointwise converge to

T∗f as N → ∞, we get by the Monotone Convergence Theorem that limn→∞∥T (N)
∗ f∥Lp = ∥T∗f∥Lp .

Therefore, we get that T∗ is Lp bounded, and we are done.

25



For the rest of this section, for B a symmetric convex body of volume 1 we consider the family of
operators

Tjvf = (χB − PL)(2jv) ∗ f (5.1)

for j ∈ Z and v ∈ [1, 2]. The fact that MB is Lp bounded independent of dimension and B for p > 3
2

follows immediately if Tjv satisfies the four conditions needed for Carbery’s interpolation theorem with
constants independent of dimension. We note that both (χB)2jv and (PL)2jv are positive operators for all
j, v, and by the semigroup maximal theorem, we see that Condition 1 is met independent of dimension.
To meet Condition 2, we consider the Littlewood-Paley decomposition given by

Rj = P(2j+1) − P(2j), (5.2)

where P is again the Poisson kernel given by P̂ (ξ) = e
−2π|ξ|
L2 . Writing Rj as

∫ 2j+1

2j
d
dtP(t)f(x)dt and

applying Cauchy-Schwartz, we have that

|Rj |2 ≤ 2j
∫ 2j+1

2j

∣∣∣∣ ddtP(t)f(x)

∣∣∣∣ dt ≤ 2j
∫ 2j+1

2j

∣∣∣∣ ddtP(t)f(x)

∣∣∣∣ dt
Therefore, we see that ∑

j∈Z
|Rj |2

1/2

≤

(∫ ∞

0

t

∣∣∣∣ ddtP(t)f(x)

∣∣∣∣2 dt
)1/2

The function on the right is Littlewood-Paley function g1(f) associated to the Poisson semigroup. It is a
classical result of Stein (see [Ste83]) that g1 has Lp operator norm bounded in p ∈ (1, 2] and independent
of dimension. Therefore, we conclude that Condition 2 holds independent of dimension.

What remains is to establish criteria to check when Conditions 3 and 4 of Carbery’s interpolation
theorem are satisfied. Both of these criteria will involve fractional differentiation and integration, so in
the following section we develop the preliminaries that are necessary.

5.2 Fractional Derivative Techniques

Given a Schwartz function h : R → R, we know there exists a Schwartz function k : R → R such
that k̂ = h. By properties of the Fourier transform, we can write k(j)(t), the jth derivative of k, as
((−2πis)jk(s))∨. This allows us to express the jth derivative of h as follows:

h(j)(t) = (−1)j
∫
R
(−2πis)jk(s)e−2πistds

With this, we define for every Re(z) > −1 the fractional derivative operator Dz for z ∈ C as

(Dzh)(t) =

∫
R
(2iπs)zk(s)e−2πistds. (5.3)

When z = 1, Dzh(t) reduces to −h′(t). In the same way, we define the fractional integration operator
Iωh(t) as a generalization of Cauchy’s formula for repeated integration: for ω ∈ C, Re(ω) > 0, and t > 0,
we define the fractional integration operator Iω as

(Iωh)(t) =
1

ω

∫ ∞

t

(u− t)ω−1h(u)du. (5.4)

When it is unclear what variable in a function we are fractional differentiating or integrating, we will
add it in a subscript for clarity.

We would hope for fractional integration and differentiation to be inverse operators. In this way, we give
a second definition of the fractional derivative operator. We analytically continue (5.4) by integrating
by parts to get a formula for Iωh(t) valid for Re(ω) > −1, giving us that

(Iωh)(t) = − 1

1 + ω

∫ ∞

t

(u− t)ωh′(u)du.
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For Re(z) ∈ (0, 1) and t > 0, we denote temporarily (D̃zh)(t) as (I−zh)(t), i.e.

(D̃zh)(t) = − 1

Γ(1− z)

∫ ∞

t

(u− t)−zh′(u)du. (5.5)

It turns out that under sufficient regularity conditions of h, definitions (5.3) and (5.5) are equivalent.
Throughout this section, we will often require the following regularity on h defined on (0,∞):

h is Lipschitz on (0,∞)

|h(t)| ≤ C0(1 + |t|)−1 for all t > 0 and C0 independent of t

|h′(t)| ≤ C1(1 + |t|)−1 for almost all t > 0 and C1 independent of t

(5.6)

Claim 1. For z ∈ C,Re(z) ∈ (0, 1), h satisfying (5.6), and t > 0, Dzh and D̃zh agree. Equiva-

lently, for k̂ = h,

− 1

Γ(1− z)

∫ ∞

t

(u− t)−zh′(u)du =

∫
R
(2iπs)zk(s)e−2πistds

Having both these definitions will be useful, as we will often take k to be a convolution kernel where
we have more information about it’s Fourier transform h. Under the regularity stated previously, the
following also holds:

Claim 2. For α ∈ (0, 1) and h satisfying (5.6), we have that (IαDαh)(t) = t.

We also have the following simple bound that will be of use to us later:

Claim 3. Let α ∈ (0, 1) and suppose h : (0,∞) → R satisfies the regularity conditions in (5.6).
If h is decreasing and concave on (0,∞), then we have that

|(Dαh)(t)| ≲ h(t)1−αh′(t)α

For proofs of the preceding claims, see section 6.2 of [LM18].

Now that we’ve defined the fractional derivative for h : R → R where h = k̂, we now work to define the
directional fractional derivative of the symbol of a Fourier multiplier on Lp(Rd). For K ∈ L1(Rd), we
define the convolution operator K ∗ f , which by Young’s inequality is Lp bounded for all p ∈ [1,∞). By

writing ξ = |ξ|θ, where | · | denotes the ℓ2 norm, and letting m(ξ) = K̂(ξ) we get by Fubini that

m(ξ) =

∫
Rd

K(x)e−2πix·ξdx =

∫
R

(∫
Rd−1

K(y + sθ)dy

)
e−2πisu|ξ|ds.

If we write φθ as
∫
Rd−1 K(y + sθ)dy then we have for ξ ̸= 0,

m(uξ) =

∫
R
φθ(s)e

−2πisu|ξ|ds =

∫
R

1

|ξ|
φθ

(
v

|ξ|

)
e−2πivudv.

Therefore, we see that the Fourier transform of 1
|ξ|φθ

(
v
|ξ|

)
in u is m(uξ). With this, assuming that

|x|αK(x) ∈ L1(Rd) we get that

Dα
um(uξ) =

∫
R
(2πiv)α

1

|ξ|
φθ

(
v

|ξ|

)
e−2πiuvdv =

∫
Rd

(2πix · ξ)αK(x)e−2πiux·ξdξ.

In this way we define the directional fractional derivative operator as

(ξ · ∇)αm(ξ) := Dα
um(uξ)

∣∣∣∣∣
u=1

=

∫
Rd

(2πix · ξ)αK(x)e−2πix·ξdx. (5.7)

When 0 < α < 1, we can apply Claim 1 to get the equivalent definition

(ξ · ∇)αm(ξ) = − 1

Γ(1− α)

∫ ∞

1

(u− 1)−α d

du
m(uξ)du. (5.8)
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Setting α = 1 and ξ ̸= 0, we note that (ξ · ∇)m(ξ) is just −ξ · ∇m(ξ), the directional derivative of m
with respect to ξ.

Lastly, given a smooth function h with compact support in (0,∞), we define for α ∈ (0, 1) the norm

∥h∥L2
α
:=

(∫ ∞

0

∣∣∣∣tα+1Dα

(
h(t)

t

)∣∣∣∣2 dtt
)1/2

.

We note that this norm is invariant under dilation, which can be seen as follows: by using the Fourier
definition (5.3) of the fractional derivative, we have that

tα+1Dα
t

(
h(λt)

t

)
= (λt)α+1Dα

v

(
h(λv)

λv

) ∣∣∣∣∣
v=λt

. (5.9)

Substituting this into the definition above gives us

∥h[λ]∥L2
α
:=

∫ ∞

0

∣∣∣∣∣(λt)α+1Dα
v

(
h(λv)

λv

) ∣∣∣∣∣
v=λt

∣∣∣∣∣
2
dt

t

1/2

=

(∫ ∞

0

∣∣∣∣tα+1Dα

(
h(t)

t

)∣∣∣∣2 dtt
)1/2

= ∥h∥L2
α
,

where the middle equality follows from the change of variables u = λt after expanding Dα
v with the

Fourier definition (5.3) of the fractional derivative.

In the following two lemmas, we connect fractional derivatives with L2 and Lp bounds on maximal
operators. We will use these lemmas to check when Conditions 3 and 4 of Carbery’s Interpolation
Theorem hold.

Lemma 6. Let (Kt)t∈R>0
be a family of L1 convolution kernels, and let ξ → m(ξ, t) be the

Fourier transform of Kt. Suppose that the functions u→ m(ξ,u)
u satisfy the regularity of (5.6). If

there exists an α ∈ ( 12 , 1) such that

sup
ξ∈Rd\0

∥t→ m(ξ, t)∥L2
α
=

(∫ ∞

0

∣∣∣∣tα+1Dα
t

(
m(ξ, t)

t

)∣∣∣∣2 dtt
)1/2

< Cα <∞.

Then we have that
∥sup
t>0

Kt ∗ f∥L2(Rd) ≤ C∥f∥L2 .

Proof. Since gξ satisfies the regularity conditions of (5.6), we can apply the integration-differentiation
identity of Claim 2 to get that

m(ξ, t)

t
=

1

Γ(α)

∫ ∞

t

(u− t)α−1Dα
u

(
m(u, ξ)

u

)
du.

Now for f ∈ S(Rd), we have that

(Kt ∗ f)(x) =
∫
Rd

m(ξ, t)f̂(ξ)e2πix·ξdξ

=
1

Γ(α)

∫ ∞

t

t(u− t)α−1

∫
Rd

Dα
u

(
m(ξ, u)

u

)
f̂(ξ)e2πix·ξdξdu

=
1

Γ(α)

∫ ∞

t

t

u

(
1− t

u

)α−1

(Pα
u f)(x)

du

u
, (5.10)

where we define for u > 0,

(Pα
u f)(x) =

∫
Rd

uα+1Dα
u

(
m(ξ, u)

u

)
f̂(ξ)e2πix·ξdξ.
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It is clear from the definition that Pα
u f is a fourier multiplier with symbol

pαu(ξ) = uα+1Dα
u

(
m(ξ, u)

u
.

)
We use Cauchy-Schwartz to get that

|Kt ∗ f(x)| ≤

(∫ ∞

t

t2

u2

(
1− t

u

)2α−2
du

u

) 1
2 (∫ ∞

0

|Pα
u f(x)|

du

u

) 1
2

.

Using the fact that 2α − 2 > −1 (since α > 1
2 ), a simple change of variables y = t

u yields that the first

integral on the right is bounded by a constant only dependent on α. Since the integral
∫∞
0

|Pα
u f(x)|dx

is independent of t, we get that

sup
t>0

|(Kt ∗ f)(x)|2 ≲α

∫ ∞

0

|Pα
u f(x)|2

du

u
.

Taking L2 norms finally gives us that∥∥∥∥sup
t>0

|(Kt ∗ f)(x)|
∥∥∥∥2
L2

≤
∫
Rd

∫ ∞

0

|Pα
u f(x)|2

du

u
dx =

∫ ∞

0

∥Pα
u f(x)∥2L2

du

u
=

∫ ∞

0

∥P̂α
u f(x)∥2L2

du

u

=

∫
Rd

∫ ∞

0

∣∣∣∣uα+1Dα
u

(
m(ξ, u)

u

)
f̂(ξ)

∣∣∣∣2 duu dξ.
But the above term in the absolute value was assumed to have a finite supremum Cα over |ξ| > 0.
Throwing away the origin of Rd in the integral (as it’s Lebesgue measure zero) and applying Parseval
once more, we obtain that supt>0 |(Kt ∗ f)(x)| is L2 bounded by Cα.

We now state an Lp analogue of the preceding lemma in a slightly more restricted setting.

Lemma 7. Let K be an L1 convolution kernel with Fourier transform m(ξ), and consider the

family of operators (K(t))t>0. Suppose the function u → m(uξ)
u satisfies the regularity of (5.6).

For a fixed p ∈ (1,∞) if both m(ξ) and (ξ · ∇)αm(ξ) have bounded Lp(Rd) multiplier norm for
some α ∈ ( 1p , 1), then we have that

∥ sup
1≤t≤2

K(t) ∗ f∥Lp ≤ C∥f∥Lp ,

where C is a function of the multiplier norms of m(ξ) and (ξ · ∇)αm(ξ).

Proof. As the family (K(t))t>0 satisfies the critera of the previous Lemma, (5.10) still holds. Rather than
apply Cauchy-Schwartz, we apply apply Holder’s with p and it’s conjugate p′ and apply the substitution
v = u

t :

|K(t) ∗ f | ≲α

(∫ ∞

t

tp
′

up′

(
1− t

u

)p′(α−1)

du

)1/p′ (∫ ∞

t

|Pα
u f(x)|p

du

up

)1/p

≤ t1/p
′
(∫ ∞

1

v−p′α(v − 1)p
′(α−1)dv

)1/p′ (∫ ∞

1

|Pα
u f(x)|p

du

up

)1/p

.

Since α ∈ ( 1p , 1), we have that (α − 1)p′ > −1, and since p < ∞, we have that q > 1. Therefore, the

integral on the left converges. The integral on the right is independent of t, and t1/p
′
is bounded on

t ∈ [1, 2], so we get that

∥ sup
1≤t≤2

|K(t) ∗ f |∥pLp ≲α,p

∥∥∥∥∥
(∫ ∞

1

|Pα
u f(x)|p

du

up

) 1
p

∥∥∥∥∥
p

p

=

∫ ∞

1

∥Pα
u f∥pp

du

up
≲p sup

u≥1
∥Pα

u f∥pp.
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We now bound Pα
u f in terms of the Lp multipliers norms of m and (ξ · ∇)αm. It follows immediately

from the computation in (5.9) that pαu(λξ) = pαλu(ξ). Since the Lp norms of Fourier multipliers stay the
same when the symbol is dilated, to bound the Lp multiplier norm of pαu , it suffices to bound the Lp

multiplier norm of just pα1 . Using an integration by parts, it follows that

pα1 (ξ) = Dα
u (m(uξ)/u)|u=1 = αDα−1

u (m(uξ)/u)|u=1 +Dα
u (m(uξ)) |u=1.

To understand αDα−1
u (m(uξ)/u)|u=1, we apply definition (5.8) and integrate by parts in reverse to get

that

αDα−1
u (m(uξ)/u)|u=1 =

α

Γ(1− α)

∫ ∞

1

(t− 1)−α

(
m
(tξ)

t

)
dt =

α

Γ(1− α)

∫ ∞

1

(t− 1)α−2m(tξ)dt.

Since
∫∞
1

(t−1)α−2m(tξ)dt converges, we get by Lemma 1 that the Lp multiplier norm of αDα−1
u (m(uξ)/u)|u=1

is bounded by the Lp multiplier norm of m(ξ). Furthermore, Dα
u (m(uξ)) |u=1 is exactly (ξ · ∇)αm(ξ).

Therefore, if both m(ξ) and (ξ · ∇)αm(ξ) have bounded Lp multiplier norm, by the triangle inequality
we conclude that sup1≤t≤2 |K(t) ∗ f | is Lp bounded as a function of these two multiplier norms.

5.3 Condition 3 - Strong L2 boundedness

We now turn to the strong L2 boundedness of the family of operators Tjv as in (5.1) with respect to the
Littlewood-Paley decomposition Rj defined in (5.2). We would like to apply Lemma 6 to the family of
Fourier multipliers TjvRj+k for a fixed k, and show that the constants returned by the Lemma decay
sufficiently as |k| → ∞. In order to apply this Lemma, we need to parametrize the multipliers of TjvRj+k

in the variable t = 2jv. Therefore, for a fixed k, we consider the family of Fourier multipliers Kk,t, and
define ξ → mk(ξ, t), the Fourier transform of Kk,t, as

mk(ξ, t) = m(tξ)(P̂L
[2j(t)+k]

− P̂L
[2j(t)+k+1]

)(ξ),

where j(t) = ⌊log2(t)⌋ and m is the Fourier transform of χB . Unfortunately, these symbols are not
continuous in t, which is needed to satisfy the regularity conditions (5.6) required for Lemma 6 and
conclude strong L2 boundedness. We instead work with the following family Nk,t of Fourier multipliers
with symbols

nk(ξ, t) = m(X(t)ξ)(P̂L
[2kY (t)]

− P̂L
[2k+1Y (t)]

)(ξ),

where we define the functions

X(t) =

{
2j + 2(t− 2j) 2j ≤ t ≤ 2j+2j+1

2

2j+1 2j+2j+1

2 ≤ t ≤ 2j+1
Y (t) =

{
2j 2j ≤ t ≤ 2j+2j+1

2

2j + 2(t− 2j+2j+1

2 ) 2j+2j+1

2 ≤ t ≤ 2j+1

It is clear that the family Kk,t contains Nk,t, as illustrated the figure below. Therefore, if we can show
that for any α ∈ ( 12 , 1), that

sup
ξ∈Rd\0

∥t→ nk(ξ, u)∥2L2
α
= sup

ξ∈Rd\0

∫ ∞

0

∣∣∣∣uα+1Dα
u

(
nk(ξ, u)

u

)∣∣∣∣2 duu <∞,

then by Lemma 6 we can conclude that TjvRj+kf is L2 bounded by some constant depending in k.

In fact, since nk(t, 2ξ) = nk(2ξ, t) (because X satisfies X(2t) = 2X(t) and so does Y ) and the L2
α norm

is invariant under scaling, it is enough to show that

sup
|ξ|∈[1,2]

∥u→ nk(ξ, u)∥2L2
α
= sup

|ξ|∈[1,2]

∫ ∞

0

∣∣∣∣uα+1Dα
u

(
nk(ξ, u)

u

)∣∣∣∣2 duu <∞. (5.11)

Our strategy to obtain (5.11) is to apply the bound on Dα given by Claim 3, for which we first need a

good understanding of nk(ξ,u)
u . We make some preliminary estimates first. For notational convenience,

we define p(ξ) = P̂L(ξ)− P̂L(2ξ) = e−2πL|ξ| − e−2πL|ξ|. It is easy to explicitly check that for θ any unit
vector in Rd that

p(uθ) ≲ min(u, u−1)
d

du
p(uθ) ≲ min(1, u−1). (5.12)
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Figure 5: A graph of X(t) and Y (t). The highlighted region are the areas where Nk,t are contained in
the family Kk,t, and the remaining regions provide the continuity needed to get between each highlighted
region.

By the estimates (4.9) and (4.10) from the previous section, we get that m(uθ) decays like u−1 and can
grow at most at a linear rate. Therefore, we have that

m(uθ) ≲ min(u, u−1)
d

du
m(uθ) ≲ min(1, u−1). (5.13)

For all |ξ| ∈ [1, 2], we note that u ≤ |X(u)ξ| ≤ 4u and u
2 ≤ |Y (u)ξ| ≤ 2u. Then by (5.13), we have that

uniformly in ξ such that |ξ| ∈ [1, 2],

m(X(u)ξ) ≲ min(u, u−1)
d

du
m(X(u)ξ) ≲ min(1, u−1). (5.14)

By the same reasoning, (5.12) tells us that uniformly in ξ such that |ξ| ∈ [1, 2],

p(Y (u)ξ) ≲ min(u, u−1)
d

du
p(Y (u)ξ) ≲ min(1, u−1). (5.15)

We introduce the notation ϕ(u) = m(X(u)ξ) and ψ(u) = p(Y (u)ξ), where we omit any independence in
ξ in ϕ and ψ since all bounds we use are uniform in ξ such that |ξ| ∈ [1, 2]. As the L2

α norm is invariant
under dilation, we note that

ϕ(u)ψ(2ku) = ∥nk(ξ, u)∥L2
α

∥n−k(ξ, u)∥ = ∥n−k(ξ, 2
ku)∥L2

α
= ϕ(2ku)ψ(u). (5.16)

Since our bounds (5.14) and (5.15) for ϕ and ψ are identical, the observation above allows us to restrict to

the case where k ≥ 0. Using (5.14) and (5.15), we obtain the following control over nk(ξ,u)
u and d

du
nk(ξ,u)

u
in the given regions:

u ∈ (0, 2k] u ∈ [2−k, 1] u ∈ [1,∞)

nk(ξ,u)
u ≲ 2ku ≲ 2−ku−1 ≲ 2−ku−1 ≲ 2−ku−3

d
du (

nk(ξ,u)
u ) ≲ 2k+1 ≲ u−1 ≲ u−1 + 2ku−2 ≲ u−1 ≲ 2−ku−3 + u−3 ≲ u−3

In this way, what we see is that nk(ξ,u)
u ≲ 2−k min(u−1, u−3), and d

du (
nk(ξ,u)

u ) ≲ min(u−1, u−3). There-

fore, nk(ξ,u)
u is both decreasing and concave in u, and we can apply the fractional derivative bound of

Lemma 3 to get that

Dα
u

nk(ξ, u)

u
≲ 2−(1−α)k min(u−1, u−3).

Putting everything together, for all k ∈ Z we have that

∥n(ξ, u)∥2L2
α
=

∫ ∞

0

|uα+1Dαhk(u)|2
du

u
≲ 2−2(1−α)|k|

(∫ 1

0

(uα+1u−1)2
du

u
+

∫ ∞

1

(uα+1u−3)2
du

u

)
.
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For α ∈ ( 12 , 1), both integrals on the previous line converge, and so we get that ∥u → nk(ξ, u)∥L2
α
≲α

2−(1−α)|k|. From the preceding analysis it is clear that u→ nk(ξ, u) satisfies the regularity conditions of
(5.6), so applying Carbery’s Lemma 6 gives us

∥sup
t>0

Nk,t∥L2
α
≲α 2−(1−α)|k|∥f∥l2 .

Therefore, we may finally conclude that independent of dimension,

∥sup
jv

TjvRj+kf∥L2 ≲α 2−(1−α)|k|∥f∥l2 .

As
∑∞

k=−∞(2−(1−α)|k|)t <∞ for all t ∈ (0, 1], we conclude that the family of operators Tjv is strong L2

bounded independent of dimension.

5.4 Condition 4 - Interpolation of Analytic Families of Operators

In this section, we work to show that our family of operators Tjv from (5.1) satisfies Condition 4 of
Carbery’s interpolation theorem independent of dimension. To show this, we look to use Lemma 7. For
a q ∈ (1, 2), suppose we can find an α ∈ ( 1q , 1) such that for the multiplier m1(ξ) corresponding to

(χB − PL) ∗ f , the Fourier multipliers with symbols m1(ξ) and (ξ · ∇)αm1(ξ) are both Lq bounded. We

note that u → m1(ξu)
u satisfies the necessary regularity conditions of (5.6) by (5.13) and (5.12), so we

can conclude by the Lemma that

∥ sup
t∈[1,2]

(K − PL)(t) ∗ f∥Lq ≤ Cq∥f∥Lq .

This Cq is also independent of the dimension Rd. Since the Lp norm of a Fourier multiplier is invariant
under dilation of the symbol, we conclude that for the same Cq,

sup
j
∥sup

v
(K − PL)(2jv) ∗ f∥Lp ≤ Cq∥f∥Lp .

This is exactly Condition 4, as we hoped for. It is clear that m1(ξ) is L
p multiplier bounded independent

of dimension for all p ∈ (1,∞) by Young’s inequality and the fact both χB and PL have L1 norm 1 when
acting on Rd for all n. What is left to show is that (ξ · ∇)αm(ξ) is Lp multiplier bounded as well with
the precise requirements of p, α as stated in Lemma 7. To do this, we will employ analytic interpolation
of operators, stated precisely in Theorem 3. This approach is performed by Carbery, but details are
omitted in his paper, so we mainly follow Section 7 of [LM18].

We first try to interpolate between 2 → 2 and r → r estimates for r < p < 2 of the family of multiplier
operators Tz for z ∈ C with symbols mz(ξ) = (ξ · ∇)zm1(ξ). This approach happens to not work, but
it is instructive to see precisely how it fails. We first consider the L2 multiplier norm of (ξ · ∇)zm1(ξ),
which we know is bounded by (in fact, equal to) the supremum over ξ ∈ Rd of (ξ ·∇)zm1(ξ) by Parseval.
On the line z = v1 + iy, fixing v1 ∈ (0, 1) and varying y, we have that

|(ξ · ∇)v1+iym1(ξ)| =
∣∣∣∣− 1

Γ(1− v1 − iy)

∫ ∞

1

(u− 1)−v1−iy d

du
(m1(uξ))du

∣∣∣∣
=

∣∣∣∣ 1

Γ(1− v1 − iy)

∣∣∣∣ ∫ ∞

1

|(u− 1)−v1−iy||uξ · ∇m1(uξ)|
du

u
.

Now we recall that |uξ · ∇m1(uξ)| is uniformly bounded in u and ξ by a constant C, from the estimate

(4.11) in Bourgain’s L2 argument and the fact that |uξ · ∇P̂L(uξ)| is uniformly bounded. Continuing,
we have

∣∣∣∣ 1

Γ(1− v1 − iy)

∣∣∣∣ ∫ ∞

1

|(u− 1)−v1−iy||uξ · ∇m1(uξ)|
du

u

≤ C

∣∣∣∣ 1

Γ(1− v1 − iy)

∣∣∣∣ ∫ ∞

1

(u− 1)−v1−1du ≲v1 2(
√

1 + y2)
1
2−v1eπ|y|/2. (5.17)
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Where the last step uses the well-known bound that for all half-planes of the form Re(z) ≥ a, a > −1,
one has that ∣∣∣∣ 1

Γ(z)

∣∣∣∣ ≤ 2(
√
1 + Im(z)2)

1
2−aeπ| Im(z)|/2. (5.18)

A large concern is at hand: suppose that we are able to sufficiently control the Lr operator norm of Tα
on some line v0 + iy in the complex plane. To apply analytic interpolation, we must be able to control
log
∣∣∫

Rd Tz(f)g
∣∣ for f, g ∈ S(Rd) on all vertical lines x + iy for x ∈ (v0, v1). We would like to like to be

able to naively control this quantity by Cauchy-Schwartz:

∣∣∣∣∫
Rd

Tx+iy(f)g

∣∣∣∣ ≤ ∥Tx+iy∥2→2∥f∥L2∥g∥L2 . (5.19)

However, ∥Tx+iy∥2→2 = supξ(ξ · ∇)x+iym1(ξ) is unbounded on the imaginary axis, since the integral of
u in (5.17) diverges when we replace v1 with x. What we will see is that to get good Lr estimates on Tz,
we actually need to look on a line to the left of the imaginary axis, which we can’t do at the moment.
To get around this issue, we need a way to “truncate” the integral in u in (5.17).

We consider a new fractional integral, the fractional Riesz integral with basepoint 2, for t ≤ 2 and ω ∈ C,
Re(ω) > 0 as

iwf(t) =
1

Γ(ω)

∫ 2

t

(u− t)ωf(u)du. (5.20)

Just as we defined the fractional derivative Dzf from Iω(f), we define a new fractional derivative dz(f)(t)
for t ≤ 2 and Re(z) < 1 by integrating (5.20) by parts and defining dz(f)(t) = i−zf(t). Precisely, we
have that

dzf(t) =
(2− t)−zf(2)

Γ(1− z)
− 1

Γ(1− z)

∫ 2

t

(u− t)−zf ′(u)du. (5.21)

These new definitions are particularly useful because of the following observation:

Lemma 8. Let m1(ξ) be the multiplier of (K − PL) ∗ f . Then for α ∈ (0, 1), (ξ · ∇)αm(ξ) −
dαt m1(tξ)|t=1 is a multiplier on Lp(Rd) with norm bounded independent of dimension.

Proof. When −1 < Re(z) < 0, we have that Dz(t) = I−z(t) and dz(t) = i−z(t) by analytic continuation.
In this range we see that for f ∈ S(Rd),

Dz(f)(t)− dz(f)(t) = I−z(f)(t)− i−z(f)(t) =
1

Γ(−z)

∫ ∞

2

(u− t)−z−1f(u)du. (5.22)

Integrating by parts allows us to analytically continue this identity. For 0 < Re(z) < 1, we have that

Dz(f)(t)− dz(f)(t) = − (2− t)−zf(2)

Γ(1− z)
− 1

Γ(1− z)

∫ ∞

2

(u− t)−zf ′(u)du.

When 0 < Re(z) < 1, we have that (ξ ·∇)αm1(ξ) = Dα
t m(tξ)|t=1 by Claim 1. Plugging in α ∈ (0, 1) into

the expression (ξ · ∇)αm1(ξ)− dαt m1(tξ)|t=1 and integrating by parts in reverse, we get that

(ξ · ∇)αm1(ξ)− dαt m1(tξ)|t=1 =
1

Γ(−α)

∫ ∞

2

(u− 1)−α−1m1(uξ)du.

Since
∣∣∣ 1
Γ(−α)

∫∞
2

(u− 1)−α
∣∣∣ < 1 for α ∈ (0, 1), we see by Lemma 1 that the Lp multiplier norm of

(ξ · ∇)αm1(ξ)− dαt m1(tξ)|t=1 is bounded by the Lp multiplier norm of m1(ξ). But this is bounded by 2
independent of dimension by Young’s inequality.
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In particular, what this allows us to do is apply Carbery’s Lemma 7 when for some p < ∞ and 1
p <

α < 1, both m1(ξ) and d
α
t m1(tξ)|t=1 have bounded Lp multiplier norm, rather than having to work with

(ξ · ∇)αm1(ξ). The truncated integral in the definition in dαt m1(tξ)|t=1 from 1 to 2 rather than from 1
to ∞ as in (ξ · ∇)αm1(ξ), will allow us to interpolate past the imaginary axis as we would have liked to
earlier.

Now we set up the correct interpolation argument. We choose some ε > 0, and define the family of
Fourier multipliers Nz for z ∈ C with symbols nz(ξ) = dztm(tξ)|t=1. On the vertical line −ε + iy, since
Re(−ε+ iy) < 0, we may write

N−ε+iy(ξ) =
1

Γ(ε− iy)

∫ 2

1

(u− 1)ε−iy−1m1(uξ)du. (5.23)

The L1 multiplier norm of m1(uξ) is bounded by 2 (again by Young’s). By the Gamma function bound

(5.18), we see that
∣∣∣ 1
Γ(ε−iy)

∫ 2

1
(u− 1)ε−iy−1

∣∣∣ ≤ 2
ε (
√

1 + y2)
1
2−εeπ|y|/2, so by an application of Lemma 1

we get that

∥N−ε+iy(ξ)∥1→1 ≤ 4

ε
(
√
1 + y2)

1
2−veπ|y|/2.

We now analyze the L2 norm of Nz, bounded by the supremum in ξ of nz(ξ), on the line v+ iy for v < 1.
We see that

|nv+iy(ξ)| =
∣∣∣∣ m1(2ξ)

Γ(1− v − iy)
− 1

Γ(1− v − iy)

∫ ∞

1

(u− 1)−v−iy d

du
(m1(uξ))du

∣∣∣∣ .
As discussed before, |uξ·∇m1(uξ)| is uniformly bound by some constant, say C1, in u and ξ. In Bourgain’s
L2 paper discussed previously, the quantity αj corresponding to χB − PL was shown to be uniformly
bounded for j ∈ Z, so |m1(2ξ)| is uniformly bounded in ξ by some constant independent of L (and thus
B), say C2. We then get that for v in [−ε, 1− ε], using the Gamma bound 5.18,

|nv+iy(ξ)| ≤ C1C2

∣∣∣∣ 1

Γ(1− v − iy)

∣∣∣∣ ∫ 2

1

(u− 1)−v−1du ≲ 2(
√
1 + y2)

1
2−veπ|y|/2.

Therefore, for v ∈ [−ε, 1− ε] (not just to the left of the imaginary axis!), we see that

∥Nv+iy∥2→2 ≲ 2(
√
1 + y2)

1
2−veπ|y|/2. (5.24)

Setting v = 1−ε in the above bound, we see that the family Nz satisfies the necessary growth conditions
for analytic interpolation of operators. It is clear that

∫
Rd Tz(f)g is analytic in z, so the only thing

that remains to be shown before we can apply 3 is the control of log
∣∣∫

Rd Tz(f)g
∣∣ for f, g ∈ S(Rd) on all

vertical lines x+ iy for x ∈ (−ε, 1−ε). Thanks to our modified multipliers, this is immediate by applying
the naive Cauchy Schwartz estimate as in (5.19) and plugging in (5.24). The figure below summarizes
our estimates, sufficient to apply analytic interpolation of operators.

Figure 6: A summary of the bounds needed to apply analytic interpolation
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The result of analytic interpolation of operators between L1 and L2 bounds tells us that for any θ ∈ [0, 1]
and 1

p = 1−θ
1 + θ

2 = 1− θ
2 , we have that for α = (1− θ)(−ε) + θ(1− ε) = θ − ε,

∥Nαf∥Lp ≲α ∥f∥Lp .

Since we want α > 1
p to be able to apply Carbery’s Lemma 7, we need that θ−ε > 1− θ

2 , i.e.
3
2θ > 1+ε.

This in turn forces p > 3
2+ε . This, in turn, forces p > 3

2 . This is precisely where the obstruction to

p ∈ (1, 32 ] comes in – we need this condition in order for interpolation to work well with Lemma 7.

In summary we get that for any p > 3
2 , we can choose ε small enough so that analytic interpolation of

operators gives for some α > 1
p , that d

z
t (m1(tξ))|t=1 has bounded Lp multiplier norm independent of

dimension. Therefore, the same can be done with (ξ · ∇)αm1(ξ), and we conclude with Lemma 7 that
Condition 4 of Carbery’s interpolation theorem holds for p > 3

2 .

6 The ℓq Balls and Open Questions

As we just saw, Carbery’s proof of Lp(Rd) bounds on MB independent of d and B hit an obstacle at
p = 3

2 during the interpolation process needed to satisfy Condition 4 of the key interpolation theorem
8. As the rest of Carbery’s proof holds for p > 1 independent of dimension and B, what can be done to
show the family of operators Tjvf = (χB − PL)(2jv) ∗ f satisfies Condition 4 of Carbery’s interpolation

theorem for p ∈ (1, 32 ]?

One idea is as follows. Continuing with the family of operators Nz and the multiplier m1 as defined
in the previous subsection, suppose that the family Nz satisfies the necessary growth conditions for
analytic interpolation of families of operators on the strip S = {z : Re(z) ∈ [−ε,A]} for arbitrarily large
A ∈ R, rather than just on the strip {z : Re(z) ∈ [−ε, 1 − ε]}. Then it’s easy to see that for any fixed
p ∈ (1,∞), we can choose A large enough such that Nα is Lp bounded for any α ∈ ( 1p , 1), and thus

Condition 4 holds by the previous subsection. This idea is promising, since our definition of dzum(uξ)|u=1

can be analytically continued to the entire complex plane. By repeatedly integrating i−w by parts for
Re(w) > 0, where iw is the Riesz integral as in (5.20), for all k ∈ Z we get expressions for dz valid for
Re(z) < k as

dzm1(ξ) =

k−1∑
j=0

(−1)j
(2− t)−z+j

Γ(j + 1− z)

d(j)

d(j)t
m1(tξ)

∣∣∣∣
t=2

+
(−1)k

Γ(k − z)

∫ 2

t

(u− t)−z+k−1 d
(j)

d(j)u
m1(uξ)du.

In order to control the family of symbols nz = dzum1(uξ)|u=1 considered in the proof of Carbery’s

Condition 4 past Re(z) = 1− ε, we need to be able to control d(j)

d(j)u
m1(uξ)du for j ≤ ⌈A⌉, analogous to

how we needed an understanding of m1(uξ) and
d
dum1(uξ) in Carbery’s case. It isn’t hard to show that

d(j)

d(j)u
m1(uξ) ≲

|ξ|j

1 + |ξ|
.

The extra factors of |ξ|j that are picked up from (ξ · ∇)zm1(ξ) as Re(z) increases pose a problem to
interpolating the family of multipliers nz = dzum1(uξ)|u=1 past Re(z) = 1− ε. Müller, in his 1990 paper
[Mül90], was able to compensate for this issue and satisfy Carbery’s Condition 4 by performing analytic
interpolation on the strip S = {z : Re(z) ∈ [−ε,A]} instead with the family of multipliers defined by the
symbols

mz,ε(ξ) = (1 + |ξ|)1−z−εdztm1(tξ)|t=1. (6.1)

The detailed analysis involved in boundingmz,ε(ξ) in L
p multiplier norm for p < 2 on the line z = −ε+iy

and bounding mz(ξ) in L2 multiplier norm on the entire strip S = {z : Re(z) ∈ [−ε,A]} (equivalently,
bounding supξmz,ε(ξ) on S) involves dependence on particular geometric properties of our fixed convex

body. We associate two geometric quantities σ and Q to a symmetric convex body B ⊂ Rd of volume
1. We define 1

σ(B) to be the infimum of the volume of the d− 1 dimensional cross sections of our body

with all hyperplanes crossing through the origin. We define Q(B) to be the supremum of the volume of
the d− 1 dimensional orthogonal projections on all hyperplanes. As σ(B) and Q(B) are invariant under
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SL(Rd), we can assume that B is in isotropic position and thus satisfies the conclusion of Lemma 4 so
that all d− 1 dimensional cross sections are the same volume up to a constant. In this way, we see that
σ(B) is equal to the isotropy constant L of B up to the universal constant in Lemma 4.

With this setup, Müller proved the following:

Theorem 9. For any p ∈ (1,∞), ε ∈ (0, 12 ), α ∈ ( 12 , 1), and B a symmetric convex body of
volume 1 in Rd, we have that

∥mα,ε∥p→p ≤ Cα(p, σ(B), Q(B)).

In particular, this constant is independent of d.

In particular, once we fix a p, choosing ε small enough so that α := 1 − ε > 1
p gives us that mε,1−ε =

d1−ε
t m(tξ)|t=1 is Lp multiplier bounded. By Lemma 8, we see that (ξ · ∇)1−εm(ξ) is Lp multiplier

bounded, and therefore Carbery’s Condition 4 is met. Combining Müller’s contributions with the rest
of Carbery’s proof, we get the following result:

Corollary 2. Consider a sequence of symmetric convex bodies (Bd)d∈N such that Vold(Bd) = 1.
If the quantities σ(Bd) and Q(Bd) are uniformly bounded in d, then for all p ∈ (1,∞) the Lp

operator norm of maximal functions MBd
can be bounded with constant independent of d.

While we do not show it here, one can show that for q ∈ (1,∞) and (Bd)d∈N the family of ℓq balls in Rd,
the geometric quantities Q(Bd) and σ(Bd) are bounded independent of d. Thus we may conclude that
the maximal function for ℓq balls is Lp bounded independent of dimension for all p > 1.

In the case of the family of cubes, i.e. the family Bd of ℓ∞ balls in Rd, we have that Q(Bd) =
√
d, and so

Müller’s argument doesn’t allow us to conclude that the maximal function for cubes has dimension-free
Lp bounds in the case of p ∈ (1, 32 ]. This case was only resolved in 2014, where Bourgain in [Bou14] was

able to explicitly show the necessary decay of d(j)

d(j)u
m(uξ) for m the Fourier transform of the cube. This

allowed him to perform an analytic interpolation of families argument to show an analogue of Carbery’s
Condition 4.

We end this article with a short discussion of open questions. If a sequence of symmetric convex bodies
(Bd)d∈N do not have Q(Bd) and σ(Bd) bounded uniformly in d, it is still unknown precisely when the
family of maximal operators MBd

enjoy Lp operator norm bounds independent of d for p ∈ (1, 32 ].
Analogous to the dimension-free Lp estimates to the spherical maximal function, a similar question
can also be asked about the behavior of Lp operator norms of maximal functions corresponding to the
boundaries of a sequence of convex bodies (Bd)d∈N (where the surface measure on the sphere is replaced
with a normalized Hausdorff measure). Finally, in the introduction, a result of Tǐser was mentioned that
passed the dimension free bounds on the Euclidean maximal function to the infinite dimensional case,
in order to prove a Lebesgue differentiation theorem for certain Gaussian measures on Hilbert spaces. It
is natural to ask if the same can be done with the results of Carbery and Müller as well as the recent
results of Bourgain for cubes to prove a Lebesgue differentiation theorem for ℓq balls in Hilbert spaces
as well.
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