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1 Introduction

Maximal functions are a central object in analysis that arise throughout the study of singular integral
operators, PDEs, ergodic theory, and beyond. One of the simplest and most natural maximal operators
is the Hardy-Littlewood maximal operator M for the Euclidean ball in R?. For f : R? — R, the
Hardy-Littlewood maximal function M is defined as

1

the maximum of averages of f over all Euclidean balls centered at x. A classical result of this maximal
function is the Hardy-Littlewood maximal inequality, from which the Lebesgue differentiation theorem
follows immediately:

Theorem 1. (Hardy-Littlewood Maximal Inequality) M satisfies a weak L' bound with constant
3¢, Explicitly, letting ; be the Lebesgue measure, we have that

d
p(fw € RY: Mf(z) > a}) < 2|l

Corollary 1. (Lebesgue Differentiation Theorem) For any Lebesgue measurable function f :
R? — R, we have that for almost all z € R¢,

1
lim ———— dy = .
rlgr(l) Voln(B(x, T)) /B(z,r) f(y) o f(l‘)
The proof of Theorem 1 follows from the Vitali covering lemma and the inner-regularity of the Lebesgue
measure. We also have the much simpler observation that ||[M f||pe(ga) < || f| Lo (ra), SO interpolating
between L> and L'*° with the Marcinkiewicz interpolation theorem, we get that for all p € (1, 00),

1/p
p
1M sy < 2 (527 B oo (1)

From this, we may conclude that the maximal function M is of strong type (p, p), or LP(R%) bounded,
for all d and p € (1, 0.

A fundamental question in the study of maximal functions is the behavior of the constants Cp 4 such
that
IM fllrray < Cpa

We see that the Euclidean maximal function M is not bounded as an operator on L'(R?) by lower
bounding M f(z) by |lz[|~¢ up to a constant, so it makes sense that as p goes to 1, the bound (1.1) goes
to oo. What is not so clear, however, is the exponential dependence on d, and whether or not this can
be improved.

| fll L (me

In 1983, Stein and Stromberg showed that Euclidean Hardy-Littlewood maximal function does in fact
have LP(R%) — LP(R%) operator norm bounded independent of d ([SS83]). Their proof passes through
earlier work of Stein that proved the LP boundedness of the spherical maximal function ([Ste76]), using
a technique called the “method of rotations” to extend this result to dimension-independent strong (p, p)
bounds for the Euclidean maximal function.

In 1986, Bourgain proved that for an arbitrary symmetric convex body B of volume 1, that the associated
maximal operator Mp defined as

1
Mpf(z) =S ol @ 1B /1 +rBIf(y)Idy

has bounded L?(RY) — L%(R?) operator norm independent of dimension as well as the convex body
B ([Bou86a]). Later that year, Carbery (and independently, Bourgain) extended this result to get
dimension-free strong (p, p) bounds of My for all p > 2 independent of B as well ([Car86], [Bou8Gh]).



The obstruction for this result to hold for p € (1, %] is contained in an interpolation argument central to
the proof.

In 1990, Miiller showed that for p € (1, %], the constants Cp 4 for the maximal operator Mp could be
bounded as a function in geometric properties of B, in particular the volumes of the smallest cross
sections and largest projections ([Miil90]). Using these techniques, it follows that for all ¢ € [1,00)
and all p € (1,00], we can obtain dimension-free bounds on the LP(R?) operator norms of the maximal
function associated with the ¢ ball. Interestingly, the case of the maximal function of the ¢*° ball was
not settled until 2014 by Bourgain ([Boul4]), due to stark differences in the geometry of the ¢>° ball
compared to the other ¢¢ balls for ¢ € [1,00) as the dimension grows.

Any L? bound on Mg gives us a differentiation theorem for the convex body B (following immediately
from the fact that continuous functions with compact support are dense in LP), i.e, that for almost all
x € RY,

. 1
}1_% W /a:—i-rB fly)dy = f(x).

Independence of dimension results for a family of convex bodies in R as d — oo can be used to
prove differentiation theorems in infinite dimensional spaces. For example, Tiser showed in [Tis88]
that the independence of dimension result of the Euclidean maximal function could be used to prove a
differentiation theorem for certain Gaussian measures on infinite dimensional Hilbert spaces.

The primary goal of this paper is to give a thorough exposition of many of the results discussed in the
introduction, with a focus on motivation and connecting heuristics with formalism. After developing
the necessary prerequisites in Section 2, we prove Stein’s dimension-free LP bounds for the Euclidean
maximal function in Section 3. Section 4 is dedicated to Bourgain’s dimension-independent L? bounds
for maximal function associated to convex bodies, and Section 5 is spent expositing Carbery’s approach
to extending this result to p > % Finally, in Section 6 we briefly outline Miiller’s approach to dimension-
independent L? bounds for maximal functions associated to the ¢2 balls, for ¢ € (1,00) and all p > 1,
and discuss some open questions in the field.

1.1 A Historical Remark: Weak Type (1,1) Bounds

While some optimizations to the Vitali covering lemma can prove a slightly better weak L' bound for
the Euclidean maximal function than the one from Theorem 1, this approach still leaves us with a bound
growing exponentially in the dimension of R%. A significant amount of research has been done to improve
these weak type (1, 1) bounds and understand the true behavior the L1:>°(R?) — L!(R?) operator norm
of a maximal function C 4 as d — 0.

In 1983, Stein and Stromberg showed that for the maximal operator associated to the Euclidean ball,
C 4 grows linearly in the dimension d ([SS83]). In fact, the optimal constant for this linear growth was
found by Melas in 2003 ([Mel03]), with constant 11"175/671. Stein and Stromberg also showed in the same
paper that for an arbitrary symmetric convex body of volume 1, the growth of C 4 is bounded by dlog d.
While we don’t yet have specific results on the relation of d and C 4 for arbitrary ¢¢ balls, Aldaz in 2011
showed that for the cube, C1 4 goes to infinity monotonically in d ([Ald11]).

The table below summarizes our current understanding of maximal functions:

Averaging body Strong (p, p) Weak (1,1)
Euclidean ball Dimension independent for p > 1 | Cd,C = 1.567208. ..

Arbitrary convex B, Volg(B) =1 | Independent of d and B for p > 2 O(dlogd)

29 ball, g € [1,00) Dimension independent for p > 1 O(dlogd)

£° ball Dimension independent for p > 1 Goes to 0o

2 Preliminaries and Notation

We assume the reader has familiarity with Fourier Analysis and basic Harmonic analysis. For a reference,
see for instance [Gra24]. Throughout this paper, when we refer to R, we refer to Euclidean space endowed



with the Lebesgue measure p. We denote S(RY) as the set of Schwartz functions on R?. We also say
that X <Y if there is a constant C' such that X < CY, and notate dependencies in C' in the subscript
of the inequality sign.

For pg € [1, 0], we say that an operator M is weak (pg,po) bounded if there exists a constant C' such
that

M fllrooe may < CllflLro
Where the LP°-* norm is given by

Po

I fllLroce = inf{C : u(z : f(z) > a) for all a > 0}

< R
oPo
For p; € [1,00], we say that an operator is strong (p1,p;) bounded, or just L? bounded, by a constant

C if our operator M has operator norm from LP*(RY) — LP*(R%) bounded by C. This operator norm
will often be shorthanded as || M ||y, —p, -

We denote the Fourier transform of a function f: RY — R as ]?or ()N, with
F© = [ flo)emrede.
Rd
We also denote the inverse Fourier transform f as fV, defined as
@)= [ fge s,
R4

We will consider dilations of a function f : R? — R by a constant A € Rs as the function z — f(z)),
denoted by fy). We will also consider normalized rescalings of a function f : R? — R by a constant
t € Ryg as the function x — tid f(t~tx), denoted by ft)- Note that normalized rescaling preserves the
L' norm of f. We also note that dilation and normalized rescaling are dual under the Fourier transform,

B Fo) =D U =Dy

Given a function m : R? — R such that m € L>(R%), we can define an L2-bounded operator T}, by

We call T, a Fourier multiplier with symbol m. We will often refer to a Fourier multiplier only by it’s
symbol m, and refer to the LP operator norm of T, the as the LP multiplier norm of m, denoted by
[lm|p—p. We also note the following important and simple fact that both m and my have the same L?
multiplier norms.

We state a simple yet useful criterion to understand the LP boundedness of a multiplier operator:
Lemma 1. Suppose that a Fourier multiplier 7" with symbol m(¢) : R? — R is a bounded

operator from LP(R%) to LP(R%). For some 9 € L'(0, o), consider the Fourier multiplier N with
symbol

n(e) = / B)mMAE)A
We have that

||”||p—>p < H¢||L1(O,oo)||m||p—>p-

This proof follows easily from the fact that m and my have the same LP multiplier norms, since we can
approximate ¥ (A) with simple functions, use linearity of Fourier multipliers, and then apply a limiting
argument.



2.1 Interpolation Results

Interpolation will play a significant role throughout this paper. Oftentimes for some p < 2, we will be
required to bound the LP norm of an operator. It will be much easier to work in in L?, where we have
access to Parseval’s identity, which once we interpolate with a “naive” bound in L? for 1 < g < 2 will
give us our desired result. One main tool for us will be the Marcinkiewicz Interpolation Theorem, which
tells us that given an operator T that is weak (pg, pg) bounded and strong (p1,p1) bounded, then it is
strong (p, p) bounded for all pg < p < py.

Theorem 2. (Marcinkiewicz Interpolation Theorem) Let 0 < py < p1 < oo, and let T be a
sublinear operator on measurable functions from R? to R. If we have that T is weak (po,po)
bounded by a constant Ay, and strong (p1,p1) bounded by a constant A;, then for all p between
po and p;, we have that T is strong (p,p) bounded by the constant

l - —

A=2 < p + p > ? ASI//IZ) —11//1)1)11 Alll//pio— 11//:1 .
P—Po P1—P

Note that by a trivial application of Chebyschev, strong (pg, po) bounded implies weak (po, pg) bounded,

so Marcinkiewicz can also interpolate between two strong-type bounds for a sublinear operator.

Instead of just interpolating a fixed operator between different LP spaces, we will often want to interpolate
between a family of operators as well. The result that allows us to this, interpolation of analytic families
of operators, is a generalization of Riesz-Thorin interpolation and the setup is as follows:

Let T, be a family of linear operators on measurable functions from R¢ to R defined for all z € S C C,
where S is the strip {z : 7o < Re(z) < r1}. Suppose that
1. The family 7, is analytic in the sense that for all Schwartz functions functions f,g: R? — R,
z—= | T.(f(z))- g(z)dx
Rd
is analytic on the the interior of S and continuous on all of S.

2. The family T, has admissible growth throughout S, meaning it satisfies the growth condition that
there exists an 0 < a < 7 such that for all f,g € S(R?), there is constant Cy,, such that for all
ze S

log

/Tz(f)g‘ S Cﬁgealm(z)_
R

Then we have the following result:

Theorem 3. (Interpolation of analytic families of operators) Let T, be an analytic family of
linear operators satisfying the admissible growth condition above, and let 1 < p < g < co. Also
suppose that My and M; are positive functions on the real line such that

[T 4iy (F)lle < Mo(y)l| £l e
1Ty iy (Pl e < Ma(y)l|f | a-

We suppose additionally that My and M; satisfy the following growth conditions for some 0 <
b<m,
log Mo(y),log My (y) < "V,

(1-06)
q

Under these conditions, we have that for 6 € [0,1], p’ = % + ,and a = Org + (1 — 0)ry

ITa ()l o So lf [l o

For proofs of both of these interpolation theorems, or their statements in full generality, see Chapter 1.3
of [Gral4].



2.2 An Introduction to Littlewood-Paley Theory

Littlewood-Paley theory is a recurring tool in the study of maximal averaging operators. In this subsec-
tion, we briefly introduce the fundamental ideas in this area and how they will be used.

We first construct a dyadic partition of unity of Rsg. Fix 1)y : R — R to be a C' function taking the
value 1 when [¢] < 1 and supported on [¢] < 2. Then we define

P;(€) = Po(277€) — o (2"77¢)

Each v; is supported on the annulus {2771 < |¢] < 2771} and we have the pointwise relation that

ZjeZ Y; =1

¥, Y, Y1

Figure 1: Our dyadic partition of unity

Using this, we define the Littlewood-Paley projection operators R; as a Fourier multiplier with symbol

b;(€]), e,
Ri 1) = ¢, (€N F(©).

By Young’s inequality, it is clear that R; is L” bounded for all p. In this way, we can write

f=>_Rif.

JEZ

What the projection operator R; is doing is “filtering” out all frequencies not at the scale of 27. Then
by writing f as the sum of it’s projections, we are breaking f apart into functions who’s frequencies are
localized in a given dyadic range.

An important heuristic that comes with Littlewood-Paley theory is that functions with low frequencies
relative to the interval we are studying them at are well-behaved in the following way: assume that we
are working with a function f : R — R (that is, say, Schwartz) on the interval [—1,1]. If we consider
frequency projections R;f for j < 1, then R;f oscillates at frequencies around 277, While this says
nothing about the magnitude of R; f, it does give us control on it’s regularity, or how wildly it’s behavior
can change in this interval. Since the periods of the frequencies R; oscillates are much larger than the
interval [—1, 1] we're studying R, f on, R, f cannot change it’s behavior significantly in this interval, and
we should expect to have a good understanding of R; f on [—1,1] for j < 1.

On the other hand, when j > 1, R; f oscillates at frequencies much finer than the width of the interval,
and so we cannot expect to have a strong handle of the behavior of R;f at these scales without further
tools. However, what we do have is that on this interval, R; f has approximately mean zero. The figure
below illustrates both of these observations.

The analysis of maximal functions plays extremely well with this Littlewood-Paley decomposition if we
break the maximal function into dyadic regions as well. Given a maximal operator Mp associated to
some convex body B, we write A ,f to be the average of f over the convex body = + Br. Then we can
write

Mpf(x) =supAp,f(x) =sup sup Ap,f(z)=sup sup Y Ap,R;f

>0 KEZ 2k <p<2k+1 k€L 2k <r<2h 1 S



low frequency relative to [ /I
length of interval |/ J

high frequency relative to J\/\ /\ N /\/\
length of interval L \,\/ A4 U \/\7‘

Figure 2: Littlewood-Paley heuristics

The terms Ap,R;f are taking the average of some convex body at a scale of r ~ 2% for some k, of a
function that oscillates at frequencies at a scale of 27. If j is much less than k, we have a very strong
understanding of Ap,R;f. In the case where j is much greater than k, then since R;f has basically
mean zero on x+1B for r ~ 28, Ap . R, f will decay as j goes to infinity. This will rigorously be achieved
by studying the structure of Ap, (in particular, it’s a Fourier multiplier who’s symbol has some nice
decay properties). This phenomenon, where on a fixed interval an averaging operator picks up higher
and higher frequencies less and less, is an instance of a general phenomenon of almost orthogonality in
Littlewood-Paley theory, where if a function’s frequency is localized away from where an operator is
“looking,” it’s contribution is negligible.

3 Dimension-Free L? Bounds for the Euclidean Ball Maximal
Function

Throughout this section, we assume B(z,r) to be the Euclidean ball centered at x and of radius 7.
One of the most foundational results in the study of maximal functions is that for p € (1,00), the
Hardy-Littlewood maximal function for the Euclidean ball

1
M () = sup
f(z) U ol B r) /B - |f(y)ldy,

has LP(R%) — LP(R) operator norm bounded independent of the dimension d. In this section, we will
exposit a proof of Stein’s original proof of this result ([Ste82] and [SS83]), with inspiration from two
other expositions, [Alm19] and [Taoll]. Our proof will first pass through a proof that the spherical
maximal function Mg has bounded LP(R?) — LP(R?) operator norm, where Mg f(z) is defined to be
the maximum of all spherical averages of f centered at x:

Mg f(x) zsup/ |f (2 + rw)|do?=  (w). (3.1)
r>0./g8d-1

In the above equation, do?~! denotes the normalized surface measure on S%~!. Then, we will use a
technique called the method of rotations to show that our resulting operator norm bound can be made
independent of d. Since pointwise,

Mf(x) < Msf(x)

we will conclude the result.

3.1 Boundedness of the Spherical Maximal Function

We first study the spherical maximal function (3.1) on Schwartz functions f : R? — R. We write Mg f
as
Msf = SupAT‘|f|a
>0

where we denote A, f as the spherical average

A.f = f(z —rw)do? 1 (w).
Sd—l



For notational convenience, we will drop the exponent on do? ! when it is clear what measure we are
working with. Our main goal will be to prove a statement about the LP boundedness of Mg:

Theorem 4. (Stein’s Spherical Maximal Theorem) Let d > 3. Then for each ﬁ < p < o0, and
f € S(RY), we have that
| Ms fllLrwey < CapllfllLe®e

for Uy, some constant dependent on d and p.

Throughout this subsection, when we write inequalities <, the constants in these inequalities are depen-
dent on p and d.

To prove this, we first note that Mg has bounded operator norm from L to L°°, since we have the
pointwise bound Mg f(z) < ||f|lcc- Therefore, if we prove Stein’s spherical maximal theorem for all
d%‘ll < p < 2, then we can interpolate with the (0o, 00) bound to conclude the result for the p we desire.

We will first study a localized version M é of the maximal operator Mg, where we only average over
spheres between radii 1 and 2:
ML= sup A.|f|
1<r<2

We will see that the argument for M é will generalize to all of Mg. We make use of Littlewood-Paley theory
and decompose our function f using an annular frequency decomposition. Just as in the preliminaries,
we fix ¥y : R — R to be a C™ function taking the value 1 when |¢| < 1 and supported on |¢] < 2, and
define ¥ (&) = 1o (27F¢) — 1o(217%€), supported on the annulus {2¥~! < |¢] < 2¥+1}. Pointwise, this
satisfies >, ¢ = 1.

~

Now we decompose f into it’s frequency projections R; f, where Ej\f(f) =, (&) f(§). Since f is Schwartz,
we can use the inverse Fourier transform to write

f=Y_ Rif
keZ
To bound M}, we split f into it’s “low” and “high” frequencies. We let R<1f =", <1 Rif. Then by the
triangle inequality and the subadditivity of Mg, proving the L? boundedness of M{ reduces to proving

the following two claims:
HM;‘(RSIJ[)”LP(M) <Cap

| fll e (ray (3.2)

M (R /)l Lo®ay < Capill fllLe@ay for k> 1, and ch,p,k <00 (3.3)
=2

The motivation behind this decomposition is that that the operator M é averages over radii at a dyadic
scale of 1 (so 1 < r < 2). The frequency projections Ry f for k < 1 cannot change at finer frequencies
than |¢| < 1. In this way, we expect for MLR;f(z) to be approximately f(z), since the behavior of
R;f(x) for j < 1 cannot change much in this annulus. When k > 1, the frequencies Ry oscillates at
has period much smaller than the width of the annulus that we are studying, and so has approximately
mean zero on the annulus. Therefore, we expect M éRj f to be small at these scales.

3.1.1 Proving the first claim

To prove (3.2), we note that we can write R;f as a convolution of f with the Schwartz function 1Zj.
Therefore we can write R<; f as f * ¢, where ¢ = qu ;. By Fubini’s theorem, we can write that

AR [@) = Ao D) = [ [ wela =)~ )iy dote)
= / f(y)/ p((z —y) —rw)do(w)dy = [+ Arep.
Rd gd—1

Now since ¢(y) is Schwartz (in fact, compactly supported), it is bounded up to a constant by W
(this constant is dependent on d since the v; are). Thus, we can bound A, for r € [1,2] by



1 1
A < — < <
Aol < [ o= raldol) $ [ o) S oo

With this, we get the pointwise bound

dy
AR )| <|f*xArp| S T — .
| Slf( )| = |f 90| /]Rd|f( y)|(1+|y|)100d
Heuristically, this just looks like averaging f on a small ball around z, so we should have that

dy
| e = ) e e < M1 @)

This easily follows from the following calculation:

dy
NG 1+|y| T )0 Z/k<y.<k+1 AT

keN
S / Pl =y <3 KB kM S )
keN kS‘ylgkf"rl kEN
SO RO f () S M f(x).
keN

Since M f is L? bounded for p € (1,00), as shown in the introduction, the fact that |A,R<1f(z)| is
pointwise bounded by M f uniformly for 1 < r < 2 allow us to conclude that |A, R<1 f(z)| is LP bounded
as well, proving (3.2).

3.1.2 Proving the second claim

We now work toward (3.3). If we run the same approach we took with the first claim for every k > 1,
we again can write A, Ry f(x) = f * Ak, where @), = 1. However, the constant such that

1

< -
Arwk(x) ~ (1 ¥+ |$|)100d

is dependent on k exponentially, which intuitively can be seen by noting that can be seen noting @ =
(r —rw) = 2kd¢0(2k§) 2(k—1) d’l/)(](2k 1¢) is an approximation to the identity of height 2*¢ and width
27F. Formally, we have that

A, ()] = / on(z — rw)|do(w)
< gk / (2 )+ (27 (2 o — ) o) S 251+ )0

With this, we see that

k

— 2
ARt @) = |+ A G| S [ 15 =) sy S 2°Mf(@),
and taking supremums on both sides gives us the pointwise bound
IMgRifllre S 2°IMf(2)|Le S 2% f e (3.4)

for all p € (1,00). While this bound isn’t good enough to prove (3.3) on it’s own, since 2¥ — oo as
k — oo, we can make use of it by interpolating it with another result. In the regime where k£ > 1, as
mentioned before we need to make use of the fact that A, is a Fourier multiplier who’s symbol has rapid
decay. Precisely, we have that

Z\ _ _ d 727T’L‘:E-§d

&)= [, [ 1o et

:/ / Fla)e i e o (w)da = do(ré) F(€).
Rd Jgd—1



So A, has the symbol do(r¢) = Jsa—1 €72 "¢ do(w). Furthermore, a well known fact on estimates of
Bessel functions (see the appendices of [Gral4] for details) tells us that

Ca
1 +1eN=

Due to the rapid decay of |d/(\7(§)| and |Vc/lc;(§)| as £ gets large, we are motivated to study L? bounds of
MgRy f for k > 1, where we have access to Plancharel, and then interpolate this bound with (3.4).

do(€)], [Vdo(€)] < (3.5)

Using the fact that Ry f is supported on annulus of inner radius 2¥~! and outer radius 2¥+!, we have
that for r € [1, 2],

A, Rifll e = || A Rifll e = || Rif(€)do(ré)|| e S 27F@D/2| Ry ||
< 27FA=D2 Fll 2 < 27RE=D/2) p|l o (3.6)

This isn’t strong enough for us, since we need to take an uncountable supremum over r (otherwise,
we could bound an supremum in r with a sum or a square sum in r). However, the Littlewood-Paley
philosophy tell us that on dyadic scales of 27, we expect our function to be controlled in oscillation on
intervals of size 277. In this way, we work to change the supremum over [1, 2] into a maximum of a discrete
set of points spaced approximately 27% away from each other (since intuitively, the function shouldn’t
“change much” between these points, so this countable maximum should capture all the information we
need). Heuristically, what we expect to happen is if we discretize our sum as described,

sup |Arka(‘r)| ~ sup |A7LRk:f(x)‘
1<r<2 neN
1<27Fpn<2

then approximate this finite supremum with the square function and take L? norms, we get that

1
| sup |AReflle SIC D, |AnRif1)2 M2 S Y. AnRifll2
1<r<2

neN neN
1<27Fn<2 1<27Fn<2

1
—k(d— 2 —k(d—
S (25 @IV £ 12)?) " = 272 )

We now work to achieve this bound rigorously. We consider a 27%-net {t,},<o+ of [1,2], which is a set
of 2F points {t1,ta,...,t;} where t, and ¢, are spaced out on the order of 2% from each other. The
fundamental theorem of calculus and the triangle inequality tell us that for any C!' function ¢ and two
real numbers 57 < sg,

sup o) < o(s0)| + [ 16/()lds. (3.7)

S1 StSSQ

Plugging in A; Ry f for ¢ and t,,t,,; for sq, s, in the above identity, and taking L? norms, we get that

d
sup AR ARy f|dr

tr<t<ty .,

tri1
< [ Ar, Rflle + H /
t,

(3.8)

L2 L2

We already know the contribution of the first term on the right by (3.6), since ¢, € [1,2]. We now bound
the second term on the right. Since A, Ry f’s derivative in r is L', by the mean value theorem and the
Lebesgue dominated convergence theorem we can pull the derivative in r out of the Fourier transform
and calculate

d

" dr

(GAmr) (© = fARDNE = L TORFE) =€ VICORTE),

Now we have by Minkowski’s inequality for integrals that

‘ /t7—+1 d tri1
< /
tr L2 t

d
= 7ka()‘d7“ ]

%A7ka() dr

L2

tri1 _ o
- / € - Vo (€) Bnf (r€)| odr.
t

-

10



Using the fact that Ryf is supported on [26=1, 251] as well as the decay of Vdo from (3.5), we have

that & - Vdo(r¢) for 1 < r < 2 is maximized by # < 27k(*3%)  Also using that |¢ - Vdo(r¢)| <
2kr)y 2

€[V do(ré)],

€ - Vdo (&) Rif (r€) |2 < 27FCF)| £ 2,

allowing us to conclude that

‘ /t7—+1
tr

With this, we use (3.8) to carry out the bound ||sup;<;<s |A, Ry f||2 we have worked toward. We see
that

d

da-=3 _p(d=t
Arka(J‘dr S (g = )27 R fll g2 S 27°C20) ) £l . (3.9)

dr 2

2

_tﬂ'+

>br

| sup [ArRifll[r2 = |sup  sup  [ARifll[re < (ZI sup IArkaIiz>
1<¢<2 T b, <t<trii e <t<tr

Plugging in (3.8) with (3.6) and (3.9), as well as using the fact that (a + b)? < a? + b2, gives us

1

2

_f(4=1 _(4=2
I sup |4, Fufllze < (Zw k(45 >>2||f||%2> < 27| £l (3.10)

Note that working over intervals of length t,,1 — ¢, is what made the contribution of the derivative in
(3.9) comparable in size to the contribution from (3.6), confirming our Littlewood-Paley heuristic that
ARy f is controlled over our net. Working over the interval [1, 2] instead of our net would have given us
a worse bound on [|sup,<,<y | A, Rif|||12 by a factor of 22.

Interpolating our two bounds for MRy, the L? — L? bound (3.10) and the L? — L7 bound (3.4) for
some q = 1+ ¢, we get by Marcinkiewicz that the the LP — LP operator norm of M{Ry, is bounded by

P L P v g—k(—dtd—1)+E5 - g—k(—d4+d—1-52)
p—(l+e) 2-p ~

If we take p > ﬁ and ¢ small enough, we see that the exponent above is negative, and so the sum

o0
Z g—k(—L+d—1-52)
k=2

converges. Therefore, we have proved (3.3), completing the proof that M. é is LP — LP bounded for all
d
P> g

3.1.3 The general case

Now we work with the entire spherical maximal function Mg, which we can write as

Msf=sup sup |A.f].
JEL 23 <r<2iH1

For every j € Z, we split f into its low and high frequency parts relative to the scale of the annuli the
operator Supg; <, <qi+1 |Arf| is averaging over. Letting R<_;f = Zk<_j Ry f, to show that Mgf has
bounded L? — LP norm, it suffices to show (by the triangle inequality and subadditivity of Mg) the
following two bounds:

[sup sup [ARe fll| < CapllfllLeme) (3.11)
J 20<r<2i+1
e}
[sup sup |ArR_j i flllrray < Caprll flle@ey for k € N, and ZCdm,k < 00 (3.12)
J 29<r<2s —
> Jj=1

Note that (3.11) bounds the parts of the Littlewood-Paley decomposition of A, f that oscillate slowly
with respect to the averaging radius, and (3.12) bounds the parts that oscillate quickly with respect to

11



the averaging radius. The claim of (3.12), that as k grows much larger than j, the operator norm of
[sup; supg; <. <oi+1 |[ArR_j i fll| Lo ey decays sufficiently fast, is another instance of the phenomenon of
“almost orthogonality” discussed previously.

Proving (3.11) goes exactly the same as proving (3.2): A,R<_;f can be written as the convolution of f
with A, for a Schwartz function ¢ independent of f, and by the exact same calculations as earlier we
conclude the pointwise bound

[ArR<—; f(2)] S M[(z).
This bound holds independently of j € Z and r € [27,29+1], which immediately proves (3.11).

To prove (3.12), we first note that by the exact same argument as in the case of M{, we have that for
27 <r< 2j+1,

|ArR_jyrf(2)] S 2" M f(2),
where this constant is independent of r and j. Therefore, we have that for all p € (1, 00),

Isup  sup AR f(@)llzr < 28] flze- (3.13)

j 2i<r<2i+l

We now need an L? bound to interpolate against. To do this, we will bound ||supy; <, <941 |Ar R—j 1 f(2)||| 12
and then square sum over j. Again, A, R_;; can’t oscillate very finely at scales of 27 ~F 5o we discretize
the supremum supy <, <qr+1 Using a 2 F-net {t,}, < 277% (again, a set of points {t, },ox in [27,2771]
spaced out on the order of 27 ~F). Using the fundamental theorem of calculus identity (3.7) from earlier,
plugging in ¢(r) = A.R_;+xf(x), and taking L? norms, we get that

/t.,.+1
tr

For 29 <y < 2/ by (3.5) and the fact that R:;f(g) is supported on [277F=1 2=+k+1] " we have
that

d

ARy f| dr

sup  |AR_ 1k f]

trStStT+1

(3.14)

<A Rejnf e + ‘

L2 L2

1A B jif o2 = AR i e = |R= o f(©)do(ro)] oo
S 2T MR e < 27H DR f e (3.15)

Since (£ A, R_; 44 f(£))" = £Vdo(r€)R_ 41 f(£), using (3.5) and the fact that |¢-Vdo (r€)| < |¢][Vdo(rE)],
we get that for 27 < r < 27+1,

d d —~ —
H%ATR—]'-&-kf”LQ = ”(%ATR—J'Hcf)A”L? = 1§ Vdo(r&)R_j 11 f(§)| 22
< 2o MEa 2 RS || e < 27927 M2 R f .

Therefore, we have the estimate that for ¢,,¢,,1 in our 277% net of [27,2/11],

Plugging (3.15) and (3.16) into (3.14) gives us that

< (e = 227727 SR e S 27H5 | Bl (3.16)
L2

try1 d
/tT |$Aerj+kf(')|dT

_L(4=2
sup  |AR_jiifl|| S 27RO Rk fllre,

tr<t<tri1

L2

and with this we can calculate that

swp sup AR joif
T tr<t<tr41

sup  AR_jiif
21 <4< 2i+1

— ot <t<tT+

1/2
S (Zl sup 1AtR_j+kf||%z)

2

1/2
d—2
S <Z 2k(d1)||R—j+kf||L2> S27ME Rk f e (3.17)
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Finally, we can bound [|sup; supy; <, <gi+1 |ArR—j4x f(2)[||L2 by estimating a supremum in j by a square
sum in j, and using (3.17):

Isup sup |AR_jxflle < (DI sup AR fC)IE

JEZ 2i<p<2i+1 jez 2<r<2it
1
2
d—2
S 2 R 2 | S 27 T e, (3.18)

JEZ

1
In the last equality, we used the fact that (3, .z ||R—j+xfllz2)* = || f||lr2, which follows from Parseval
below:

<Z||Rj+kf||i2> = [ IFOF X vsenieh?c

kEZ kEZ

Since ¥y, is supported in [279TF=1 275 the sum 3, ;- j4k(|€])? is at most 2 for any £ € RY.
One final application of Parseval gives the desired inequality'.

Interpolating (3.18) with (3.13) using Marcinkiewicz gives us again, that for p > #‘ll, Mg is LP — LP
bounded. This completes the proof of Theorem 3.1.

3.2 The Calderéon-Zygmund Method of Rotations

Now that we have shown that the spherical maximal function is LP bounded on Schwartz functions for
D> d;iv ie. for f € S(R"),
| Ms f(z)|| ey < Cap

we will show that this constant is in fact independent of dimension d.

|f||LT’(]Rd)7

Before discussing this argument, we show why independence of the spherical maximal function implies
independence of dimension for the maximal function for the Euclidean ball. Intuitively, these two maxi-
mal functions are related: If the average of |f| on B(z,r) is some value K, then the average value of |f]|
on some sphere centered at x and of radius less than r» must be at least K. Therefore, we expect to have
the pointwise bound

Mf(z) < Msf(x) (3.19)
This is seen rigorously by switching to polar coordinates, where wq denotes the surface area of S<.

_ 1 _ e
1B ) Je@n |f(y)ldy = Bl )] /O war" A f(x)dr < Mg f(x)

j‘or wd,r.nfl

s = Mg f(z).
|B(z,7)]

Taking supremum over 7 on both sides gives (3.19). Therefore, we will have shown that for a fixed p and

for all Schwartz functions f : R* = R, |M f||1»ra) < K||f|| £ (ra) for some constant K independent of d

satisfying p > d;il. Combining this with the fact that the LP(R?) operator norm of M f is bounded for

the finite number of d satisfying p < d;j_l(as shown by the Vitali covering argument in the introduction)
shows that an LP bound for the Euclidean maximal function on Schwartz functions f : R — R can be
taken independent of d.

We still need to get rid of the Schwartz condition which we needed to use Fourier analysis techniques on
the spherical maximal function. This is easily disposed of using a standard density argument and the
subadditivity of M f. Since M is a sublinear bounded operator from LP(R?) to LP(R?), we have that
for a sequence of measurable functions f,, converging in L? to a function f, || M fn|lLr — ||M f]|L». Now

I This is one direction of the L2 case of the general Littlewood-Paley inequalities, which states that for any p € (1, 00),
1/2
the LP norm of the square function (ZjeZ(ij)2> is up to some constant factor equal to the LP norm of f. Thus,

Littlewood-Paley theory gives some sense of “orthogonality” that one would a-priori only expect to see in the L? world.

13



taking f to be an arbitrary L? function, and f, to be a sequence of Schwartz functions approximating
it in LP norm (since Schwartz functions are dense in L?), taking limits on both sides of || M fy || 1r(ga) <
Kpll fullLrray allows us to conclude that the Euclidean maximal function is bounded independent of
dimension.

We now proceed to prove that
Theorem 5. TForp > #‘117 the constants C) 4 in the LP bounds of the spherical maximal function
can be taken to be independent of d.

From the boundedness of the spherical maximal function, for f : R? — R we have that ||Ms f]|| Lr(Rd) <
C(d,p)|| fll Lr(re), for some constant C'(d,p) depending on d and p. We would like to find a relation
between C(d, p) and C(d+ 1, p), namely, show that they can be made equal. To do so, we need a way to
relate the spherical maximal function on R? to the spherical maximal function on R?*!. A natural way
to approach this is through the method of rotations: viewing an average over the sphere S as taking
averages of all copies of S%~! in S, and then averaging over these values.

In this manner, for wy € S¢ C R4+ we first let U, € SO441 be an orthogonal transformation that

takes the dth standard basis vector egy; € R4t to wy. More specifically, with the canonical embedding
of R? in R4*1 U, is an orthogonal transformation that maps S?~! C R? to the set {z € S?: x 1 wp}.

Wo SA < Rd.-ﬂ

P gt ' ) W (5*)

o ="

R‘ c R&‘\'l

Figure 3: Viewing S9! as a subset of S¢
We create a maximal function over S?~1s about z in the plane U, (R%) C R4 as
Mg® f(z) := sup Az°|f| (),
r>

where A% is defined as

A0 f(x) = / flx— erOw)dad_l(w).

Sd—1

We note that if wg = eq,1, then we can easily compute using Fubini’s theorem that for f : R¥*! — R,

Mg fll Lo (atr) =/ | Mg fIP = // |Mg"™* f(x,y)[Pdx dy
R+ R JR4
= [IME F gy < [ CpP I
— C PP W,
Since A% f(x) = A7 (f 0 Uu, ) (Ug, ), we see that
IME° fllogsssy < Clds IS 0 Ul zogassty = Clds ) fllocassny: (3.20)

The observation that lies at the heart of the “method of rotations” is that an average over an S% is the
same as an average over all averages of S9~1s inside S¢. More rigorously:
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Lemma 2. We have the following equality:
A f(z) = / A% f(2)do?(wo) (3.21)
Sd

Proof. This observation follows from the general fact that given a compact lie group G acting transitively
on a compact manifold M, there exists a unique G-invariant probability measure on M. We fix x and r,
and have SOy, act transitively on the sphere z + 7S¢, We define the two measures

W(E) = Axp(z) = / x5z — rw)dot(w)

/AWOXE )do(wo) // (2 — 1Upyw)do ! (w)do®(wp)
Sd Sd—1

It follows immediately from the monotone convergence theorem that both p and v are in fact measures.
It is clear that p(z + 75¢) = v(z +rS?) = 1 and that both measures are SOy invariant. Therefore,
u = v, and integrating f against both of these measures gives the desired result. O

Taking supremums over 7 on both sides of (3.21) gives us that

Mg f(x / AY f(x da (wo) < /Sd Slip A‘;fof(a:)dad(wo) = /Sd Mg’of(x)dad(wo).

Finally, using Minkowski’s integral inequality and (3.20), we get that

M @lrquoeny < | [ 35" (oo )

< / IME F 0 do (o)
Sd

Lr

< [ C@PN arquonsydotn) = CA o

This tells us that C(d, p) = C(d+1, p), proving Theorem 5, and by the discussion in the beginning of this
subsection, proves that the LP norms of the Euclidean maximal function M can be taken independent
of dimension for p € (1, c0].

4 L? Bounds of Maximal Functions for Convex Bodies

Once Stein and Stromberg settled the independence of dimension for the maximal function over the ball
in R with respect to the 2 norm. The natural follow up question is does this independence of dimension
remain if we replace the ¢? ball with unit balls with respect to other ¢? norms, for p € [1,00]? More
generally, if we choose an arbitrary convex body B in R? of volume 1, fix p € (1,00] and consider the
maximal function

1
M = Maf =swp oo | 17— n)ldy

where rB = r - B, is it true that the LP operator norm of Mpg is independent of both the dimension n
and the conver body B? Bourgain and Carbery showed that the answer is yes, but were only able to
show this for p > 2. In the following two sections, we will explain the proof of this claim, and see where
the obstruction at 3 arises. As before, the proof will boil down to obtaining an L? — L? bound for Mp
(and then mterpolatmg with the trivial L — L* bound), and interpolating this against an LP — LP
for Mpg. Throughout this section, we will derive an L? bound of Mg independent of dimension and the
convex body B following Bourgain’s paper [Bou86a].

We first work to set up the general framework around the maximal function Mp. For a general L'
function K : R — R, we can write

(f * K(t))( ) f K[t] / f I/{- g —2miz- fdé' / f tg 2mwix- fdé-
Now, fixing a convex body B C R? of volume 1, we write, by change of variables,

(VolatB)~" / [z — )ldy = (VolyB)™ / =)y = £ ().

tB
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In this way, we may write the maximal operator Mg as the supremum of convolution operators
Mpf =sup f*(xB)@)-
>0

Our goal is to bound the L? operator norm of the family of operators above independent of B and the
dimension of the space it lives in. Just as in the proof of the independence of dimension on the spherical
maximal function, we will use Littlewood-Paley theory to analyze this operator. Similarly to Stein’s
proof previously, we will obtain a bound on this operator norm as a function of the quantities

aj= sup |K()| and B;= sup [(VK(E),E)] (4.1)

2J <t<2i+2 2 <$<2i+2

In the case of the spherical maximal inequality, we had decay of the symbol of the maximal operator due
to Bessel function estimates, which utilize the geometry of the sphere. Here, we’ll need to make use of
the convexity of B in order to argue that the oy, 3; are sufficiently small.

4.1 A general Littlewood-Paley bound

In this subsection, we will apply the Littlewood-Paley theory techniques from Stein’s Spherical Maximal
Theorem to a more general setting, for our general use later.

Theorem 6. Consider K € L'(R?) and define o; and §; as in (4.1) above. Then for any
f € S(RY), there exists some universal constant C' such that

Higg |f % Kl 2 < CT(E)| £ 22,

where we define 11 1
LK) =Y oj(a] +5;7).

JEL

Proof. While the calculations for this proof become a bit messy, the ideas follow the same general
Littlewood-Paley principles, but with decomposing the convolution kernel K rather than the input
function f.

e We decompose K with a Littlewood-Paley decomposition into > jez k;
e We break up the supremum over ¢ into the supremum over dyadic intervals

e We discretize the supremum supgw<;<ous1 f * (kj)(+) over points spaced out by distances where
(kj)() is controlled

We create our Littlewood-Paley decomposition of K in the following way: let {n;}32; be a partition of
unity of R, such that 7; is supported in [27,27%2], 0 < n; < 1, and AR C277. With this, we define
k; to be the Fourier localizations of K onto an annulus of inner radius 27 and outer radius 2772 i.e.

k(&) = n;(ENK (©).

Now by the triangle inequality,

su * K < su * (ks .
gl « Kol < 3l (ol

We fix a j, and split our supremum into dyadic intervals by square summing the supremum in v below.

[sup [ f * (k) ) lll2 = [lsup  sup [f * (k)22
t>0 VEZ 20 <t<L2v+1

1/2 12
= 4 * (k) o) = sup (k) o l|I2 . 4.2
U%QUSSQUHU (])u)l] L%IIWSSWIJ‘ (k) lll72 (4.2)

LZ
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We are left to analyze the behavior of

| sup [ f % (kj)lllc2 (4.3)

QvStS2v+1

We first express f * (k;j) () explicitly for 2V < ¢ < 2+

|f* (k) (= |V F(Ok;(t€) Q“Z“di‘

Since Ej(@ is supported in [27,29%2] and 2¥ <t < 2°71 we can replace F(&) with fj_v(ﬁ), where we
define for m € Z, R R
fm (&) = F(E)X|glefzm—1,2m+2).

Now we are tasked with understanding the behavior of

sup
2'U§t52v+l

[ F@heen<a.

As discussed before, we discretize this sum, but we will leave the spacing in our net ambiguous and
choose it at the end. We note that the differing treatments that we did for low and high frequencies in
Stein’s theorem will be taken care of through this spacing (which we can do since we’re only working in
the L? case). We fix an integer A; > 1 and a v, and we consider a (2”A;1)—net {t:}r<a, of [29,2vF1].
Again, this net is just a set of A; points {t1,t2,... ,tAj}, where ¢, and ¢,4; are spaced out on the order
of 2”A]71 from each other.

We recall the fundamental theorem of calculus identity (3.7). Plugging in ’fRd ﬁ,v(g)ﬁj(tg)e%mfdg
for ¢ and t,,t,41 for s1, s in the identity, we get that

sup
tr<t<trii

) Ev(éﬁj(t&)e%"”fd«f‘

2mix-§
o LBk seemsag

T+1

ds.

/ fj v t f) 2mwix- fdé-’

We note that the derivative of %j(sf)e%m'f with respect to s is <ng(s§)7 ¢), which is L!. By the mean
value theorm and the Lebesgue dominated convergence theorem, we can pull the derivative into the
integral. This gives us that

E_U@)Ej(tf)emfdf'

sup
tr<t<tri 1 |JRA
try
<| [ iemeoemesa + | [ | [ Foomhe. oo @
Now we break up a supremum over [2V,2""1] as
sup Ev@)%j(t@eszdg’ =sup  sup ﬁv(«s)EAtﬁ)emedf].
2v<t<avtt | JRd T <t<t g |JRE

Plugging (4.4) into the above expression, dominating the supremum over 7 with an £2 norm over 7, and
putting everything past (4.3) together, we get that

Fimo(€)k; (t) 2™ dg

sup [ f* (k)] = |lsup sup
2v<t<av L Tt <t<t, i1 |JRe Lo
2\ 3
< E sup fj—v(f)kj(t§)€2ﬂm'§d€’|
— ||t-<t<tr1 |Jre
tri1

D m

2
+
L2

(]

/ fj U t 5) 2mix- §d§

/ Fi—o(€)(Vk;(5€), ) 2””§d§‘ds
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Using Parseval, we estimate

’/R Fi- o)k (€)™ S

L 1fj—o % (R Iz = 15— (ks () p2 < [Rsllooll fi—oll 2. (4.6)

And using the same Parseval trick with Minkowski’s integral inequality,

/t7+1 /t7+1
t t,

. e i
S/t (VE; (5€), O llocll fi—vllzzds < 2°ATHIfj—ullze  sup  [(VE;(t6),€)llo-  (4.7)

T tTStStT+1

ds

[ B (TR0, 92 s

/Rd J?jv(f)(VEj(SE),£>e2m'5dg‘

Plugging (4.6) and (4.7) into (4.5) finally gives us that

I sup [ (kyelllze < A7 (lkilloollfi—ollze + 27 A7 N fimollzz sup [[(V;(t€),€)ll)

27;§tS2v+1 21)St§2u+1

< A fy ol (R e + AT (TR €),€) 1),

where the last step follows by bringing the 2 into the inner product. We plug this result into (4.2) to
get that

Isup 1= (i) llze < 1llcs (AF IR oo + 45 ¢ IOPR(€),€) ).

The chain rule tells us that (VE;(€), &) = (VE;(€), &)n;(1€]) + (K;(€), O (1€) < Clay + By), since we

created 7); to control its derivative. If we pick A; = (a; + Bj)ajfl, we conclude that

i 1
lsup | f * Klllz < C | D az(a;+8)7 | [Ifllz>-
t>0 jez

4.2 Making use of convexity

In order to use Theorem 6 toward proving an L? bound on Mp, we need to argue that the «j, j3;
corresponding to Xp (the convolution kernel associated to the maximal function Mpg) are sufficiently
small. As mentioned before, in Stein’s Spherical Maximal Theorem, this quantity was bounded using the
geometry of the sphere. In our current case, we will see that a strong understanding of Xp will follow
from an understanding of the volumes of the cross sections of B.

The key idea behind why we want to this is comes from the following observation: Our end goal is to
understand the Fourier transform of yp, where B is a symmetric convex body. Then we are trying to
control the integral

)?B(f):/ e 2Ty,
B

Let’s fix a € € R%, and use Fubini to turn this integral into a double integral, integrating in both the &
direction and in the hyperplane perpendicular to £&. We note that frequencies oscillating in the £ direction
are going to be constant on hyperplanes perpendicular to &, since the inner product in the exponential
is zero. Therefore, we can reduce the Fourier transform of x5 to the one-dimensional integral dependent
on the d — 1-dimensional volume of cross sections of B perpendicular to &.

We give a brief overview of the convex geometry results that we’ll use before moving on to their applica-
tions. Again, we assume that we are working with a symmetric convex body B € R? with Voly(B) = 1.
Then for £ on the (¢2) unit ball of R%, we define the function ¢¢ : R — R as

e(u) =Vol,_1{z € B: (z,£) = u}

We note that the hyperplane He , = {x € R?: (z,£) = u} is a translate of the d— 1 dimensional subspace
orthogonal to & by the vector ug, so Vol,_1{z € B : (z,£) = u} is the cross sectional volume of B sliced
by the hyperplane He ,,.

We quickly prove some simple properties of ¢¢:
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Lemma 3. For B C R? a symmetric convex body, the function ¢ is decreasing on [0, 00), and
(wg)ﬁ is concave outside of the region where ¢ = 0.

Proof. Concavity follows from the standard Brunn-Minkowski inequality: take a,b € R, and take any
0 <p < 1. Then since pHe o + (1 — p)Hep C He poy(1—pyp by convexity, we have that

(ge(pa+ (1= p)b) T = Voly_1 (He pat(1—ppp) ™7 > Volu_1(pHe,a + (1= p)He ) 7
> Voly—1(pHe,o) T + Volo1 (1 — p)He p) 7T > plipe(a)) T + (1 — p) (e (b)) 7.

Since ¢ is an even function, we conclude that ¢, is decreasing on [0, c0). O

As discussed before, we want some uniform bound on the volumes of the cross sections of B. We would
hope for a statement that says cross sections of B are “the same” up to some universal constant, i.e.
there are constants L(B) (depending on B) and C (independent of B) such that for all £ € S9!,

1

el < L(B)-Voly_1(z € v(B) : (z,£) =0) < C

However, this is too strong to hope for. For instance, take a family of very long, skinny cylinders B; in
R, of length ¢4~ and cross sectional diameter <, where C' is chosen so that each circular cross section

t?
has d — 1 dimensional volume td%l This is illustrated in the figure below.

(- /,I/ CI D;CA
Vﬂ\n—l (/ /3 = -%

Vol -1 LO )/’\‘:E\—I

Figure 4: A family of cylinders whose largest to smallest cross section ratio goes to infinity

A horizontal slice of B; gives us a cylinder one dimension lower, whose volume is on the order of ¢ (since
this is a cylinder of length =1 whose cross sections are d — 2 dimensional spheres of radius t). Yet, a
vertical slice of By gives us a d — 1 dimensional sphere whose volume is on the order of td%l

This result is true through if we allow ourselves to scale B by some linear transformation, that Bourgain
credits to Milman.

Lemma 4. There is a v € SL(RY) and some constant L depending on B such that for all ¢ € S¢
and some universal constant C,

% <Voly_1(x € v(B) : {z,£) =0) <

=~lQ

In other words, given any convex body B, there exists some determinant 1 linear transformation v such
that once we apply it to B, all of B’s cross sections have essentially the same volume (up to a constant
independent of B or the dimension)?. In the above Lemma, we can take v € SL(R?) to be such that
v(B) is in isotropic position, meaning that for all ¢ € R9,

/ (2, €) 2z = L?|€]3. (48)
v(B)

2In fact, Lemma 4 actually holds without the constant L; that is, there exists a universal constant C such that for any
convex body B C R? of volume 1, there exists a linear transformation v € SLn(R) such that all cross sections of v(B) are
bounded below by % and above by C, where C' is independent of dimension and the convex body! This statement, known
as the Bourgain Slicing Conjecture, was proven by Klartag and Lehec in 2022 (see [KL22])
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Such a v can be found as [} [(z, £)| is a positive definite quadratic form, hence is equivalent under SL(R?)
to a constant multiple the identity quadratic form ||£]|2. The unique L in (4.8) is called the isotropy
constant of B.

We note that by a simple change of variables, and the fact that Volgv(B) = VolyB since v € SL(R?),

Mg f(z) = sup(Volgu(B)) ™" / £ f (x — y)|dy
t>0

tv(B)

= Sup(VoldBfl/ t=(fov) (v e — y)|dy = Mp(f ov)(v 'x).
>0 B

From here it is immediate that [|[Mpf||z2 = ||[My@e)fllz2. Therefore, to show that Mp is bounded
independent of dimension, we may assume that B is in isotropic position. We will make use of this in
the next subsection.

4.3 The Poisson Kernel Trick

We apply the general Littlewood-Paley bounds from Theorem 6 to Mp, the convolution operator with
kernel xp. To show that Mp is bounded independent of dimension and B, we need to show that for

aj= sup (X))  Bi= sup  [(VXB(). &),
20 <t<27+2 20 <t<27+2

the sum L .

2o (o +5])

JEL
is bounded by a constant independent of B or the dimension of R%. To do so, as discussed before we
first bound Y 5(£) in terms of it’s cross-sectional volumes, where we may crucially assume that B is in
isotropic position (by applying v € SL(R?)) and thus satisfies the conclusion of Lemma 4. For any
¢ € RY — {0}, let v denote the unit normal in the direction of ¢, and let |¢| denote the magnitude (¢2
norm) of ¢£. By Fubini and change of coordinates, splitting an integral over R? into an integral over
hyperplanes perpendicular to v, we get that

558(5):/ e—27riw‘€d1.:‘/('DV(u)e—Q‘/riléludu:/SDV(u)e%rilgludu7
B R R

where the last equality follows from the fact that B is symmetric about the origin, so ¢ is even. Since ¢
is an even function and sin is odd, we note that the imaginary part of this last integral is zero, leaving
us with

s(E) = / o0 () cos(2m[€u)du

By integration by parts, and the fact that ¢, is compactly supported,

&)= \ [ ot costzrfua

=| [ bt costerielaga

< [ Ieltadu
R
Since ¢ is even and positive we have that

20 1
! "(w)du = —¢(0) ~ — L1
|§|/ i If\ ., Prtwdu= 1o~ g

So in conclusion, we have that

IXB()| < @L_ (4.9)
However, this bound happens to not be strong enough, since we get that
1 1
a; < sup —r! = —,
T gici<aie [€] 2L
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which as j goes to —oo, causes a; to blow up. The issue is more fundamental that this: for Theorem 6
to be useful out of the box, we need Y5(£) to go to zero as |£| goes to zero, but this isn’t the case: we
estimate |1 — X5 (§)], by noting that

1—%@=Luwmmmzé%wuwmmmw%

We have again by integration by parts that
1= xal <€ [ puwlule] < CalelL (4.10)
R

This tells us that xp(£) goes to 1 as || — 0, and so our sum in «; cannot converge as j — —oo.
Bourgain’s insight was to not bound X g directly with the estimates in Theorem 6, but to instead bound
(xp — T)" for T an operator such that

1. The maximal operator sup;~q [Ty * f] is L? bounded

2. The Fourier transform f(f) goesto 1 as |£] = 0

For our operator T', we choose the Poisson kernel Py, with L the isotropy constant of B, defined on the

Fourier side by N
Pr(¢) = e

It is clear that ﬁL(f) — 1 as [¢] — 0. The fact that the maximal operator sup,-,7; is L? bounded
follows from the semigroup maximal theorem below.

For a fixed p € [1, oc], a semigroup of operators is a one-parameter family of L? operators {7} };cr., that
is a semigroup, i.e.

o Ty 0Ty, =Thy 41,
o TO =1Id

We have the following maximal theorem for semigroups satisfying the following axioms (known as sym-
metric diffusion semigroups):

Theorem 7. (The General Semigroup Maximal Theorem in R¢)
Consider a semigroup {7} }ier., of LP(R?) operators that satisfies the following axioms:

1. T is a contraction, i.e. ||Tif|l, < [|fllp

[\

. Ty is symmetric, i.e. is a self-adjoint operator on L2(R?)
. Ty is positive, i.e Ty f > 0if f >0

im0 | Tefll2 = 1l

.1=1

Tt s W

Then the maximal function My (f) = sup,~¢ |3 f(z)| is bounded as an operator from L? — L? by
some constant A, independent of the dimension R,

Proof. See page 73 of [Ste70]. O

Clearly, the family T; = (Pr)) for t > 0 is a semigroup satisfying all of the properties above. Using
this, we apply the general Littlewood-Paley theory estimates from Theorem 6 to K = xp — Pp, where
L = L(B) is the isotropy constant of B, instead of applying it directly to xp. If we’re able to show that
independent of dimension and choice of B,

[sup | £+ Klll2 < Cll 2,
t>0

it immediately follows from the triangle inequality and the maximal theorem for semigroups that Mp is
bounded independent of B and the dimension d.
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To show such a C exists, it remain to compute the «;, 8; in Theorem 6 for K. We first obtain a bound
on [(Vxg(£),€)]. Since the derivative e2™*¢ is integrable on B, by Lebesgue Dominated Convergence
and the mean value theorem we get that

(V0.6 = (| Ve Sdn,§) = ([ 2mivem*Sdag) =C [ (@),
B B B
Again by Fubini and change of coordinates, we get
[ wgem=tao = [ uleleatore e,
B R

and integrating by parts twice gives us

(V%8(6).6) < € [ I(upt))fdu < C: ( [ etwau+ [ pr’(u)ldU> <20, ()

By (4.11), |(VX5(£), &) is uniformly bounded by a constant. Since |(VPL(€),¢)| is uniformly bounded
by a constant as well, we have that §; is uniformly bounded in j. To bound «;, we work in the two
regimes 29 < L1 and 29 > 1.

e In the regime 2 < L7

—

aj= sup |(xp—P))I <  sup (|1 =X +I[1 - PL)])
27 <|g|<29+2 27 <|¢|<20+2
g 2]L + (1 _ 6727r2j+2L) g 2]L
e In the regime 27 > L~
aj=sup  (Re(©)+|P))) S27L 7 e oI

27 <|¢]<29+2

11 1
From here, it is clear that the sum EjEZ o (ozj2 + BJ?) converges to a value independent of L, and we
conclude the proof that Mp is strong (2,2) bounded independent of B and the dimension of R.

5 L? Bounds of Maximal Functions for Convex Bodies

From the obvious L> bound on Mp independent of dimension and B, interpolation with the dimension-
free L? bounds for Mp just proved give dimension-free LP boundedness of Mp independent of B for
p > 2. The same argument for the Euclidean maximal function shows that Mp is not L' for any convex
body B, but it remains to understand what happens in the regime p € (1,2). Shortly after Bourgain
proved the dimension-free L? bounds for Mp in the previous section, both Bourgain ([Bou86b]) and
Carbery ([Car86]) independently extended this result to L? for p > 2.

Bourgain’s approach to p > % analyzes the dyadic mazimal operator associated to B C R%:

1 i
Mp:1f(z) = EEIZW(B) /B |f(z — 27y)|dy.

This object is more convenient to study than the standard maximal function, since we are taking a discrete
supremum rather than an continuous one, although it is clear that L” boundedness of Mp ; is weaker
than that of Mp. To analyze this object, Bourgain considers the vector-valued operator f; * (XB)2s),
which takes in a sequence of functions (f;);ez and outputs the sequence of functions (f; * (xB)(24))jez-
By studying the LP(¢7) norms of this vector-valued operator, i.e the constants A(p,q) such that

q

Z(fj * (XB)(2))? < Alp,q) ||| D_(f)" :
J o J o

Q
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vector-valued interpolation and Fourier analysis leads to the result that A(p,o0) < oo for all p € (1, c0).
This immediately implies the result that for all p € (1, 00), there exists a C such that

IMp 1 f(@)|e Sp Cllfllzr-

Bourgain then presents a short lemma that allows one to relate the norms of Mp; with Mp, which is
only strong enough to obtain LP bounds of Mp independent of dimension and B for p > % Interpolating
this result with Bourgain’s L? estimates in the previous section gives L? boundedness of M independent
of dimension and B for all p > %

In this section, we choose to exposit Carbery’s argument ([Car86]) in full rather than Bourgain’s. This
is primarily due to the fact that future work in the area of maximal functions build on the framework
developed in Carbery’s article, in particular Miiller’s independence of dimension result in 1990 for the
maximal function associated to ¢? balls for ¢ € [1,00), and Bourgain’s analogous result in 2014 for the
case ¢ = oco. Along with Carbery’s original paper, we also draw from material in a survey by Deleaval,
Guedon, and Maurey, particularly Chapters 6 and 7 ([LM18]).

In Carbery’s approach, an interpolation approach to maximal operators between LP and L? is introduced,
that rather than requiring equal strength in both bounds on Mg, requires more strength on the L? side
and less strength on the LP side. The required estimates needed to apply this interpolation will arise as
consequences of boundedness of fractional derivatives, which we will discuss later in this section.

5.1 Carbery’s Maximal Function Interpolation

Given a family of linear operators Tj, indexed for j € Z and v any indexing set, and Ry for k € Z
some Littlewood-Paley decomposition of R, we consider the corresponding maximal operator T, =
sup, sup,, [T, f|. The maximal function we are looking to show L” boundedness for, sup,-o(x5—PL) ) *f
with B a symmetric convex body of volume 1 and L it’s isotropy constant, fits into this framework by
setting Ty, f = (XB — PL)(2i0) * f for j € Z and v € [1,2]".

We say this family is strongly bounded on LP with respect to the Littlewood-Paley decomposition Ry if

llsup sup |Tjo Rj+i flll e < agll f||zr, where Z al, < oo for all t € (0,1]
i kez

Strong boundedness implies boundedness for the maximal operator T} by the triangle inequality. In our
setting, Ty, f = (XxB — PL)(2iv) * [, strong boundedness is asking that as the scale of frequencies f is
localized at differs more and more from the spatial scale T}, is averaging on, ||Tj,f|/z» should decay
sufficiently fast. This is another reflection of the almost-orthogonality principal of Littlewood-Paley
theory. We note that both the techniques of the spherical maximal theorem and Bourgain’s dimension-
free L? bounds have not produced strong L? boundedness for their corresponding families of maximal
operators.

We say that the family of operators T}, is weakly bounded on LP with respect to the Littlewood-Paley
decomposition Ry if
sgpllsupsup TjoRjrrfllle < CllfllLe
i v

Again, in our setting, Tj,f = (xB — PL)(2iv) * f, being weakly bounded is asking that no matter the
difference between the scales Tj, is averaging on and the frequencies of f are localized at, Tj, f is never
“too large.” It is easy to check that boundedness of T, implies weak boundedness of the family T7,.

We have the following interpolation result between strong and weak bounds of a family of linear operators:

Lemma 5. For ¢y < ¢ < qi, if the family of linear operators T}, is strongly bounded on L% and
weakly bounded on L%, then T}, is bounded on L? for all ¢ € (go,q1), with constant independent
of dimension.

3We keep the Poisson term in our convolution kernel to aid in our estimates later
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Proof. We fix a ¢ € (go,q1). For each k, we use Marcinkiewicz interpolation on each of the sublinear
11

operators sup; sup,, [T, Rj1| to get that for o = >~ and a; independent of dimension,

9 a1

[supsup |Tjo Rtk flllLe Sq aillfllze
i v

Since a € (0,1), strong boundedness gives us that ), _, ay < oo. Then by the triangle inequality, we
conclude that
[supsup [Tjul[lg—q < ZHSUP sup [Ty Rjylllg—q < 00
J v k}eZ v
[

Carbery’s main proposition in his paper is a collection of weaker conditions that allows one to do an
interpolation argument as above. To prove T is L? bounded for ¢ € (qo, ¢1), we will need to show that
T}, is a strongly L% bounded family of operators, but we can get away with less than weak boundedness
for the control we need in L. The statement of the Theorem below is slightly less general than Carbery’s
statement in [Car86], but it is all that will be used in this exposition.

Theorem 8. (Carbery’s Interpolation Theorem) Suppose ¢ € (1,2), T}, is a family of linear
operators on measurable functions from R? to R, and Ry, is a Littlewood-Paley decomposition. If
we have that

1. T, is essentially positive, i.e. T}, = Ujy — S}y, with Ujy, Sjy @ family of positive operators,
and for all r € (¢,2], S is L" bounded by a constant K,

2. For all r € (g,2], we have that

IO 1Rk fP) 2 < CLllfllr

keZ

3. T. is strongly bounded on L? by some constant K

4. For all r € (g,2], we have that

LT

LT S C’r||f|

sup|[sup | T, 1|
J v

Then in fact T, is LP bounded for all p € (g, 2], with operator norm bounded above as a function
of K, K,C,,C!

Proof. We fix a p € (q,2). To show that T, is L? bounded, we first consider a truncated version of this

operator, denoted as TfN), where we take the supremum of T}, over all v but only over j € ZN[—N, N].
For a fixed N we get that

N p

N 1
1T =1 e, supTollp < ||| 37 (supT50)” < (2N)7 [[sup Tyoll < AN)[£1lp-
’ v ]:—N v v

Lpr

We will show that this constant A(N) above is in fact independent of N, and thus we can take a limit
in N to conclude that T is L bounded.

We fix rg,71 such that ¢ < 79 < 11 < p < 2. We also define a vector-valued version of the op-
erator sup, |7}, f|, which takes in a sequence of functions (g;);ezn(—n,n) and outputs the sequence
(sup, | Tjug;) jezni—n,n]- We will study L*(¢") estimates of this vector-valued operator. We have that
when when s =t = rg,
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1 1

N 0 o

N
" T
‘suplijgjl | > sup Tl — [ > Isup T,
v ¢ro llro =N v j=—N v
Lo
1
N o
T T
<[ S @orlgle) = Culllgsleolliro.

j=—N
We now consider s = oo,t = ;. We make the following decomposition of T},

sup  sup|Tjug;| < sup  sup|Sjug;| + sup  sup|Uj,g5]
JEZN[-N,N] JEZA[-N,N] v JEZAI-N,N] v

where we treat S and U as vector-valued. If we let g = sup;czni—n n lgj| and consider a sublinear
positive operator W, we note that |Wg;| < W|g;| < Wg. Since S is sublinear as a supremum of linear
operators, we get that

Using the fact that U is sublinear as well, we get that

sup [S;v9;] = sup sup|SjuglllLm < llsup [SjuglllLn < Kryllgllnm-
v v v

¢ llLm JEZN[-N,N]

sup |Uj, 951 =1 sup  sup|Ujugjlller < |lsup|UjuglllL

v = llLm JjEZN[—N,N] v v

N
< |Isup |SjuglllLrs + lIsup | TjuglllLrs < (Ko + 1T ) llgllzrs

v v
We conclude that
N
’ sup |Tj,9;] I sup  sup[Sjugillin < K + 1T o )llgl o -
v ¢=llpr1 jEZN[—N,N] v

We now apply the vector-valued Marcinkiewicz interpolation theorem (a corollary of the standard
Marcinkiewicz interpolation, see for instance Exercise 4.5.3 in [Grald]). We interpolate our L™ (£7)
and L™ (¢£>°) bounds to get that sup, |T}j,g;] is L™(¢?) bounded for some ro € (rg,r1), with constant

K'(2K,, + ||T*(N)||)O‘ for K’ some constant depending on 1,79, and o < 1.

Now we set g; to Rjir, to get that

Al 4
ma sup [T} R; < sup IT: R 2
JeTnoN,N] Up\ J J”“f‘m = j_E_:N< Up| iRtk S| )
‘
1
N 2
< K'QE + (TN | 30 R | || < COE @K, + [T 1D £
j=-N
L.

We therefore conclude that TAEN) is weakly bounded as a family of L™ operators. Using Condition 3 of

the theorem and Lemma 5 we get that T*(N) is L? bounded for our distinguished p fixed in the beginning
of the proof, with constant

1T o < Dy(Ds + Ds | T 10)™
for o’ < 1, and D1, Dy, D3 all independent of N. Therefore, it is clear that we can take a bound for
||T*(N) ||z» indepdendent of N.

Since for a fixed f, T. iN) f is an increasing sequence of positive functions that pointwise converge to

T.f as N — oo, we get by the Monotone Convergence Theorem that limnHOOHT*(N)fHLp = || Tuf|lLr-
Therefore, we get that T, is LP bounded, and we are done. O]
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For the rest of this section, for B a symmetric convex body of volume 1 we consider the family of
operators

Tjof = (XB = Pr)(200) * [ (5.1)

for j € Z and v € [1,2]. The fact that Mp is LP bounded independent of dimension and B for p > %
follows immediately if T, satisfies the four conditions needed for Carbery’s interpolation theorem with
constants independent of dimension. We note that both (x p)2s, and (Pr).i, are positive operators for all
j,v, and by the semigroup maximal theorem, we see that Condition 1 is met independent of dimension.
To meet Condition 2, we consider the Littlewood-Paley decomposition given by

Rj = P(2j+1) — P(Qj)7 (5.2)

~

J+1
where P is again the Poisson kernel given by P(£) = erﬂlE‘. Writing R; as f;] 4Py f(x)dt and
applying Cauchy-Schwartz, we have that

o2t Pty
R <2 /2 s hof(@)|dt <2 /2 P f(@)|dt
Therefore, we see that
1/2 . , 12
SR < (/O t‘jtP(t)f(x) dt)
JEL

The function on the right is Littlewood-Paley function gi(f) associated to the Poisson semigroup. It is a
classical result of Stein (see [Ste83]) that g; has L? operator norm bounded in p € (1, 2] and independent
of dimension. Therefore, we conclude that Condition 2 holds independent of dimension.

What remains is to establish criteria to check when Conditions 3 and 4 of Carbery’s interpolation
theorem are satisfied. Both of these criteria will involve fractional differentiation and integration, so in
the following section we develop the preliminaries that are necessary.

5.2 Fractional Derivative Techniques

Given a Schwartz function h : R — R, we know there exists a Schwartz function k¥ : R — R such
that k = h. By properties of the Fourier transform, we can write kU)(¢), the jth derivative of k, as
((—27is)?k(s))V. This allows us to express the jth derivative of h as follows:

h(t) = (—1)/ /R (—2mis) k(s)e ™5 ds

With this, we define for every Re(z) > —1 the fractional derivative operator D* for z € C as

(D*h)(t) = / (2ims)*k(s)e 2™t ds. (5.3)
R

When z = 1, D*h(t) reduces to —h/(t). In the same way, we define the fractional integration operator

I“h(t) as a generalization of Cauchy’s formula for repeated integration: for w € C, Re(w) > 0, and ¢ > 0,

we define the fractional integration operator I as

1 o0

(I°R)(t) = = / (u — )" h(u)du. (5.4)
w Jt

When it is unclear what variable in a function we are fractional differentiating or integrating, we will

add it in a subscript for clarity.

We would hope for fractional integration and differentiation to be inverse operators. In this way, we give
a second definition of the fractional derivative operator. We analytically continue (5.4) by integrating
by parts to get a formula for I“h(t) valid for Re(w) > —1, giving us that
1 oo
I“h)(t) = ——— — )R/ (u)du.
(n)O) =~ [ = K
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For Re(z) € (0,1) and ¢ > 0, we denote temporarily (D*h)(t) as (I"*h)(t), i.e.

1 Oo —zp!
)/t (u—t)7*h (u)du. (5.5)

(D*h)(t) = T2

It turns out that under sufficient regularity conditions of h, definitions (5.3) and (5.5) are equivalent.

Throughout this section, we will often require the following regularity on h defined on (0, co):

h is Lipschitz on (0, c0)
|h(t)] < Co(1+|t])~* for all t > 0 and Cy independent of ¢ (5.6)
|'(t)| < C1(1 + |t|)~* for almost all ¢ > 0 and C; independent of ¢

Claim 1. For z € C,Re(z) € (0,1), h satisfying (5.6), and ¢ > 0, D*h and D*h agree. Equiva-
lently, for k = h,

1 o — _ irs) k(s)e—2"t ds
_m/t (u—t) h(u)du—/R@ )7k(s) ¢

Having both these definitions will be useful, as we will often take k to be a convolution kernel where
we have more information about it’s Fourier transform h. Under the regularity stated previously, the
following also holds:

Claim 2. For a € (0,1) and h satisfying (5.6), we have that (I*D*h)(t) = t.
We also have the following simple bound that will be of use to us later:

Claim 3. Let o € (0,1) and suppose h : (0,00) — R satisfies the regularity conditions in (5.6).
If h is decreasing and concave on (0, 00), then we have that

(D*R)(&)] < h(t)'~H/ (1)

For proofs of the preceding claims, see section 6.2 of [LM18].

Now that we’ve defined the fractional derivative for h : R — R where h = %, we now work to define the
directional fractional derivative of the symbol of a Fourier multiplier on LP(R%). For K € L'(R%), we
define the convolution operator K * f, which by Young’s inequality is L? bounded for all p € [1,00). By
writing & = |£]0, where | - | denotes the £2 norm, and letting m(¢) = I?(f) we get by Fubini that

m(©) = [ K(x)e 2 v¢de = /

( K(y+ s€)dy> e 2misulél g
Rd R \JRd-1

If we write @g as [pa—1 K (y + s0)dy then we have for & # 0,

— —27isulg] — i i —2mivu

Therefore, we see that the Fourier transform of %gpg (I?vl) in w is m(u€). With this, assuming that
|z|*K (x) € L'(R?) we get that

Dim(ug) = [

R

(271'2'1))0‘%809 <|2|> 6727riuvdv — /I;d(27m-z . g)aK(,I>6727rium'£d€.

In this way we define the directional fractional derivative operator as

(€ V)*m(€) == Dim(uﬁ)‘ N /Rd@”%f)‘*f( (x)e™ 2™ da. (5.7)

u=1
When 0 < a < 1, we can apply Claim 1 to get the equivalent definition
(€ 9)1m©) = —pr | - D (e 58)
. =—— - —m . .
" 'l—a) /; “ dy S
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Setting @ = 1 and £ # 0, we note that (£ - V)m(&) is just —& - Vm(§), the directional derivative of m
with respect to &.

Lastly, given a smooth function h with compact support in (0, 00), we define for @ € (0,1) the norm

- 1/2
il o= ([ e (MY
La 0 t t

We note that this norm is invariant under dilation, which can be seen as follows: by using the Fourier
definition (5.3) of the fractional derivative, we have that

1 g <h(t)‘t)) = (A Do (h(/\);}”)>

(5.9)
Substituting this into the definition above gives us
1/2

2 9 1/2
> wilma [(ROW dt | o (Rt dt
1 llez = /O (A Dy (H)| - = (/0 t**'D (?) t) = [Ihllzz,

Av
where the middle equality follows from the change of variables u = At after expanding D¢ with the
Fourier definition (5.3) of the fractional derivative.

v=At

In the following two lemmas, we connect fractional derivatives with L? and LP bounds on maximal
operators. We will use these lemmas to check when Conditions 3 and 4 of Carbery’s Interpolation
Theorem hold.

Lemma 6. Let (K;)ier., be a family of L' convolution kernels, and let & — m(&,t) be the

m(§;u)

Fourier transform of K;. Suppose that the functions u — satisfy the regularity of (5.6). If

there exists an « € (3,1) such that

sup ||t = m(€, 1)z, = ( /
EERI\0 0

Then we have that

2 at
t

* ta-i—lD? (m(f7t)>

1/2
) < Oy < 0.

[[sup K¢ * f||p2(rey < C||f]| 2
>0

Proof. Since ge satisfies the regularity conditions of (5.6), we can apply the integration-differentiation
identity of Claim 2 to get that

L T /too(u —t)e-1Dg (m(zf)) d

Now for f € S(R?), we have that

(K¢ f)(z / m(&, t £)e? it e

_@ /t Hu— o /R d D:( miE, u )>f(£)e2mfd5du

~ra | (- ,Z) (P pH@L, (5.10)

where we define for u > 0,

e = [ usiog (ME) figenca
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It is clear from the definition that P f is a fourier multiplier with symbol
() —ueripg ()
u

We use Cauchy-Schwartz to get that

st (5 (-378) ([t

Using the fact that 2o — 2 > —1 (since a > %), a simple change of variables y = % yields that the first
integral on the right is bounded by a constant only dependent on a. Since the integral fooo | P2 f(x)|dx
is independent of ¢, we get that

sup |(K: # )(@)2 Sa / P2 ()P
t>0

0 u

Taking L? norms finally gives us that

// P i@P S = TIPS~ [T IR )
/Rd/ a+1Da< m(&, u ))f(QQdu

—d¢.

u
But the above term in the absolute value was assumed to have a finite supremum C,, over |{] > 0.
Throwing away the origin of R? in the integral (as it’s Lebesgue measure zero) and applying Parseval
once more, we obtain that sup,- |(K: * f)(z)] is L? bounded by C,. O

Sup (K * f)(x

We now state an LP analogue of the preceding lemma in a slightly more restricted setting.

Lemma 7. Let K be an L! convolution kernel with Fourier transform m(¢), and consider the
family of operators (K())i>0. Suppose the function u — % satisfies the regularity of (5.6).
For a fixed p € (1,00) if both m(¢) and (£ - V)*m(£) have bounded LP(R) multiplier norm for
some o € (%, 1), then we have that

| sup Ky * flle < CllfllLe,
1<t<2

where C' is a function of the multiplier norms of m(¢) and (§ - V)*m(§).

Proof. As the family (K()):>0 satisfies the critera of the previous Lemma, (5.10) still holds. Rather than
apply Cauchy-Schwartz, we apply apply Holder’s with p and it’s conjugate p’ and apply the substitution

— u.
U_t'

1/p’

o P01 0 du\"'”
v e p__
1K) * f| Sa (/t " <1 u) du </t [P f (@) up)
’ oo ’ ’ 1/17/ o du 1/17
o ([T ([renor)”
1 ! v

Since a € (%, 1), we have that (o — 1)p’ > —1, and since p < oo, we have that ¢ > 1. Therefore, the

integral on the left converges. The integral on the right is independent of ¢, and ¢!/ " is bounded on

t € [1,2], so we get that
o d
(/1 |Pe f)l u:f) H

oo
= [ IperpSy s swlpzs,
1 u>

|| SUP |K (t) * f|||Lp ~Sa,p

29



We now bound P2 f in terms of the LP multipliers norms of m and (£ - V)*m. It follows immediately
from the computation in (5.9) that pS(AE) = p%,(§). Since the LP norms of Fourier multipliers stay the
same when the symbol is dilated, to bound the LP multiplier norm of p¢, it suffices to bound the LP
multiplier norm of just p{*. Using an integration by parts, it follows that

P (€) = D (m(u€) /u)lu=1 = a Dy~ (m(ug) /u)u=1 + D (m(u)) u=1.
To understand a D2~ (m(u€)/u)|u=1, we apply definition (5.8) and integrate by parts in reverse to get
that

aa’lmuufzioo_*am@ _ @ Oo_afzm
D m(ue)/u)hor = s [ =07 (0 )= O [T e mgar

l-«
Since [, (t—1)*"2m(t&)dt converges, we get by Lemma 1 that the L? multiplier norm of D3~ (m(ug) /u)]u=1
is bounded by the LP multiplier norm of m(§). Furthermore, D% (m(uf)) |u=1 is exactly (£ - V)*m(§).
Therefore, if both m(€) and (£ - V)*m(§) have bounded LP multiplier norm, by the triangle inequality
we conclude that sup; ;<o [K(s) * f| is LP bounded as a function of these two multiplier norms. O

5.3 Condition 3 - Strong L? boundedness

We now turn to the strong L? boundedness of the family of operators T}, as in (5.1) with respect to the
Littlewood-Paley decomposition R; defined in (5.2). We would like to apply Lemma 6 to the family of
Fourier multipliers T}, R;j4 for a fixed k, and show that the constants returned by the Lemma decay
sufficiently as |k| — oco. In order to apply this Lemma, we need to parametrize the multipliers of T}, Rt
in the variable t = 27v. Therefore, for a fixed k, we consider the family of Fourier multipliers K}, ;, and
define & — my (€, t), the Fourier transform of Ky, as

mk(&vt) = m(tg)(PL[zj(tHk] - PL[Zj(t)+k+1])(§)7

where j(t) = |log,(t)| and m is the Fourier transform of yp. Unfortunately, these symbols are not
continuous in ¢, which is needed to satisfy the regularity conditions (5.6) required for Lemma 6 and
conclude strong L? boundedness. We instead work with the following family Ny.,¢ of Fourier multipliers
with symbols

(&) = mX D) (PLuy iy = Prypiny ) ()

where we define the functions

. - . 2j 2j+1 . . 2j 2J'+1
2 +2(t—-27) 20 <t<TEZ ():{ga 2 << 22
2

X(t)= {2j+1 2j+22j+1 <t < it 2 42t — 2j+23+1) 2"—&-22"+1 <t < itl

It is clear that the family K+ contains Ny ¢, as illustrated the figure below. Therefore, if we can show
that for any a € (%, 1), that

u u

w1 e <<£>>’ du

oo
sup ||t = (€ w2 = sup /
£ERI\0 ecrd\0 Jo

then by Lemma 6 we can conclude that T, R; 4« f is L? bounded by some constant depending in k.

In fact, since ny(t,2€) = ng(2¢,t) (because X satisfies X (2t) = 2X (¢) and so does Y) and the L2 norm
is invariant under scaling, it is enough to show that

2
w1 pe <”’“(§u)>‘ L (5.11)

u u

o0
sup [lu s ma(6)l3; = sup |
lgle(1,2] lgle(1,2] Jo

Our strategy to obtain (5.11) is to apply the bound on D% given by Claim 3, for which we first need a
good understanding of W We make some preliminary estimates first. For notational convenience,

we define p(&) = Pp(€) — Pp(2€) = e~2mLIEl — ¢=27LI| Tt is easy to explicitly check that for 6 any unit
vector in R? that

p(uf) < min(u,u™") dip(uG) < min(1,u™t). (5.12)
u
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Figure 5: A graph of X(¢) and Y'(¢). The highlighted region are the areas where Ny are contained in
the family K, ¢, and the remaining regions provide the continuity needed to get between each highlighted
region.

By the estimates (4.9) and (4.10) from the previous section, we get that m(uf) decays like u~! and can
grow at most at a linear rate. Therefore, we have that

m(uf) < min(u,u™") %m(uﬁ) < min(1,u"1). (5.13)

For all |¢| € [1,2], we note that u < |X(u){| < 4u and § < |Y(u)§| < 2u. Then by (5.13), we have that
uniformly in £ such that [£]| € [1, 2],

d

m(X (1)€) < min(u,u"t) ﬁm(X(u)ﬁ) < min(1,u™t). (5.14)

By the same reasoning, (5.12) tells us that uniformly in & such that |¢] € [1,2],

d

p(Y (w)§) S minu,u™")  —=p

(Y (w)€) < min(1,u™ ). (5.15)

We introduce the notation ¢(u) = m(X (u)€) and ¥ (u) = p(Y (u)€), where we omit any independence in
¢ in ¢ and 1 since all bounds we use are uniform in ¢ such that |¢| € [1,2]. As the L2 norm is invariant
under dilation, we note that

S(wv(2%u) = [Ink(€ )l In-x(& )l = lIn-k(& 25022 = $(2"u)e(w). (5.16)

Since our bounds (5.14) and (5.15) for ¢ and 1) are identical, the observation above allows us to restrict to
ng(&,u) and <4 ng(§u)
u du u

the case where k > 0. Using (5.14) and (5.15), we obtain the following control over
in the given regions:

u € (0,2%] u € [27F 1] u € [1,00)

ng(§u) 5 2ku S 2—ku—1 g 2—kru—l 5 2—ktu—3

i(nk(E,u)) < 9k+1 <yl <oyl okq,—2 <ul]< 9=k =3 4 =3 < 3

In this way, what we see is that W < 27 min(u~t, u~?), and %(W) < min(u~!,u=3). There-
fore, W is both decreasing and concave in u, and we can apply the fractional derivative bound of
Lemma 3 to get that

DY Le(f’u) < 9~ (1—a)k min(u™t, u™3).
U

Putting everything together, for all k € Z we have that

> d ! d > d
||”(57U)H%3 :/0 \uO‘HDahk(u)F% 52—2(1—a)|k\ </O (ua+1u—1)2j+/l (ua+1u—3)2u)_

u u
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For a € (3,1), both integrals on the previous line converge, and so we get that [[u — ng(&u)| 2 Sa

2~ (1=2)Ikl From the preceding analysis it is clear that u — ng (€, u) satisfies the regularity conditions of
(5.6), so applying Carbery’s Lemma 6 gives us

||5Ukat||L2 o 27Kl £l2

Therefore, we may finally conclude that independent of dimension,

Isup Tjo Rysn fllz2 Sa 2707 £ e
Jvu

As S0 (27N < o6 for all t € (0, 1], we conclude that the family of operators T}, is strong L?
bounded independent of dimension.

5.4 Condition 4 - Interpolation of Analytic Families of Operators

In this section, we work to show that our family of operators T}, from (5.1) satisfies Condition 4 of
Carbery’s interpolation theorem independent of dimension. To show this, we look to use Lemma 7. For
a ¢ € (1,2), suppose we can find an « € (%, 1) such that for the multiplier m4(§) corresponding to
(xB — Pr) * f, the Fourier multipliers with symbols m4(§) and (£ - V)*m4(§) are both L? bounded. We
note that u — w satisfies the necessary regularity conditions of (5.6) by (5.13) and (5.12), so we
can conclude by the Lemma that

| sup (K — Pr) * fllza < CyllfllLa-
te(1,2]

This C, is also independent of the dimension R?. Since the LP norm of a Fourier multiplier is invariant
under dilation of the symbol, we conclude that for the same Cj,

sup||sup(K — Pp)iv) * fllee < CyllfllLe-
J v

This is exactly Condition 4, as we hoped for. It is clear that m4 () is LP multiplier bounded independent
of dimension for all p € (1,00) by Young’s inequality and the fact both xp and Pr, have L' norm 1 when
acting on R? for all n. What is left to show is that (¢ - V)*m(¢) is LP multiplier bounded as well with
the precise requirements of p, o as stated in Lemma 7. To do this, we will employ analytic interpolation
of operators, stated precisely in Theorem 3. This approach is performed by Carbery, but details are
omitted in his paper, so we mainly follow Section 7 of [LM18].

We first try to interpolate between 2 — 2 and r — r estimates for r < p < 2 of the family of multiplier
operators T, for z € C with symbols m,(£) = (£ - V)*m1(§). This approach happens to not work, but
it is instructive to see precisely how it fails. We first consider the L? multiplier norm of (& - V)*m (£),
which we know is bounded by (in fact, equal to) the supremum over & € R? of (£-V)?m; (€) by Parseval.
On the line z = vy + iy, fixing v; € (0,1) and varying y, we have that

1 - _vl_iyim U U
]y we)a

6 V) m (O] = |~

1 o —v1—1 du
e ) D e T

Now we recall that |u€ - Vmg (u)] is uniformly bounded in « and & by a constant C, from the estimate
(4.11) in Bourgain’s L? argument and the fact that |uf - VP (u€)| is uniformly bounded. Continuing,
we have

du
I _ 1) iy __
’ 1—v1 —iy) ‘/ (w=1)" g - Fma (u) u
C‘ (1l ‘/ Ty S,y 2(y/1 4 y?)E eI, (5.17)
— v — 1Y)
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Where the last step uses the well-known bound that for all half-planes of the form Re(z) > a, a > —1,
one has that

< 2(y/1 + Im(2)2)2 %™ m(2)1/2, (5.18)

A large concern is at hand: suppose that we are able to sufficiently control the L" operator norm of T,
on some line vy + 7y in the complex plane. To apply analytic interpolation, we must be able to control
log U}Rd Tz(f)g| for f,g € S(RY) on all vertical lines x + iy for 2 € (v, v;). We would like to like to be
able to naively control this quantity by Cauchy-Schwartz:

’1“(2)

[ Tesn09] < ITisllacal ol (5.19)

However, || Ty iyll2—2 = supg(& - V)"t ¥my (€) is unbounded on the imaginary axis, since the integral of
win (5.17) diverges when we replace v; with z. What we will see is that to get good L” estimates on T,
we actually need to look on a line to the left of the imaginary azis, which we can’t do at the moment.
To get around this issue, we need a way to “truncate” the integral in w in (5.17).

We consider a new fractional integral, the fractional Riesz integral with basepoint 2, for t < 2 and w € C,
Re(w) > 0 as

() = ! ] /t (u—t)“ f(u)du. (5.20)

]

Just as we defined the fractional derivative D* f from I*(f), we define a new fractional derivative d(f)(t)
for t < 2 and Re(z) < 1 by integrating (5.20) by parts and defining d*(f)(t) = i~*f(t). Precisely, we
have that

e f) = 2 ;(’i)_zj)(z) - m{ 5 /t (= )= f (u)du. (5.21)

These new definitions are particularly useful because of the following observation:

Lemma 8. Let m(§) be the multiplier of (K — Pr) * f. Then for a € (0,1), (- V)*m(&) —
d¢my (t€)|t=1 is a multiplier on LP(R?) with norm bounded independent of dimension.

Proof. When —1 < Re(z) < 0, we have that D*(t) = I~*(t) and d*(t) = ¢~ *(t) by analytic continuation.
In this range we see that for f € S(R9),

DA = (O = IO - (00 = s [ w07 wde, (652)

(_
Integrating by parts allows us to analytically continue this identity. For 0 < Re(z) < 1, we have that

DA - a0 =~ - [T 0 e

When 0 < Re(z) < 1, we have that (£-V)*m4(§) = DZ¢m(t€)|;=1 by Claim 1. Plugging in o € (0, 1) into
the expression (£ - V)*mq (&) — d¥my(t€)|:=1 and integrating by parts in reverse, we get that

(6 V) ma (€) — dimy (£6) pr = ﬁ / "= 1) g () du,

Since

F(%a)f;o(u— 1)_a‘ < 1 for @« € (0,1), we see by Lemma 1 that the LP multiplier norm of

(&-V)*my (&) — dfmq (t€)|t=1 is bounded by the LP multiplier norm of m4 (). But this is bounded by 2
independent of dimension by Young’s inequality. O
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In particular, what this allows us to do is apply Carbery’s Lemma 7 when for some p < oo and % <
a < 1, both my(§) and df'mq (t£)];=1 have bounded LP multiplier norm, rather than having to work with
(€-V)*mq(§). The truncated integral in the definition in d¥m; (t£)|¢=1 from 1 to 2 rather than from 1
to 0o as in (€ - V)¥my (&), will allow us to interpolate past the imaginary axis as we would have liked to

earlier.

Now we set up the correct interpolation argument. We choose some £ > 0, and define the family of
Fourier multipliers N, for z € C with symbols n,(§) = dfm(t&)|i=1. On the vertical line —e + iy, since
Re(—¢ +iy) < 0, we may write

Nl = oy | (= D () (5.23)

The L' multiplier norm of m; (u€) is bounded by 2 (again by Young’s). By the Gamma function bound
(5.18), we see that ’ﬁ ff(u — 1)571‘74*1‘ <21+ y2)2==e™Wl/2 | 50 by an application of Lemma 1
we get that

4 l_’U ™
[N—ctiy(©)ll151 < E(W)Z emlvl/2,

We now analyze the L? norm of V., bounded by the supremum in & of n,(€), on the line v + iy for v < 1.
We see that

m1(2§) 1 > —v—iy d
s = | B o [ e D i an).

As discussed before, |u&-Vmy (u)] is uniformly bound by some constant, say Cy, in u and . In Bourgain’s
L? paper discussed previously, the quantity «; corresponding to xp — Pr, was shown to be uniformly
bounded for j € Z, so |m1(2£)| is uniformly bounded in £ by some constant independent of L (and thus
B), say C. We then get that for v in [—¢, 1 — ¢], using the Gamma bound 5.18,

1 2
‘ / (w—1)"""du S 21+ y2)3 eI,
1

. <
[ty (§)] < C1C2 (1 —v—iy)

Therefore, for v € [—¢,1 — £] (not just to the left of the imaginary axis!), we see that

[ Nyiglla—sa S 2(v/1+ y2)2 VeI, (5.24)

Setting v = 1 —¢ in the above bound, we see that the family IV, satisfies the necessary growth conditions
for analytic interpolation of operators. It is clear that [, T.(f)g is analytic in z, so the only thing
that remains to be shown before we can apply 3 is the control of log URd Tz(f)g| for f,g € S(R?) on all
vertical lines z+ iy for x € (—e,1—¢). Thanks to our modified multipliers, this is immediate by applying
the naive Cauchy Schwartz estimate as in (5.19) and plugging in (5.24). The figure below summarizes
our estimates, sufficient to apply analytic interpolation of operators.

|4 Terig®.9 7| £ NEuy Ugn, €"11E

\

- e e o -

wiylje

i | IND2 £ e

Exiy x;i\l 0-0)+iy

NI s e

Figure 6: A summary of the bounds needed to apply analytic interpolation
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The result of analytic interpolation of operators between L' and L? bounds tells us that for any 6 € [0, 1]
and % =10+ % =1- 2 we have that for a = (1 —0)(—¢) +0(1 —¢) =0 —e,

INafllLe Sa £l Le-

Since we want o > % to be able to apply Carbery’s Lemma 7, we need that 0 —e > 1 — g, i.e. %9 >1+e.

This in turn forces p > 2?’? This, in turn, forces p > % This is precisely where the obstruction to

p e (1, %] comes in — we need this condition in order for interpolation to work well with Lemma 7.

In summary we get that for any p > %, we can choose € small enough so that analytic interpolation of
operators gives for some a > %, that df(mq(t€))|t=1 has bounded LP multiplier norm independent of
dimension. Therefore, the same can be done with (£ - V)®m4(€), and we conclude with Lemma 7 that
Condition 4 of Carbery’s interpolation theorem holds for p > %

6 The ¢? Balls and Open Questions

As we just saw, Carbery’s proof of LP?(R%) bounds on Mp independent of d and B hit an obstacle at
p = % during the interpolation process needed to satisfy Condition 4 of the key interpolation theorem
8. As the rest of Carbery’s proof holds for p > 1 independent of dimension and B, what can be done to
show the family of operators T, f = (xB — PL)(2iv) * f satisfies Condition 4 of Carbery’s interpolation
theorem for p € (1,32]?

One idea is as follows. Continuing with the family of operators N, and the multiplier m, as defined
in the previous subsection, suppose that the family NN, satisfies the necessary growth conditions for
analytic interpolation of families of operators on the strip S = {z : Re(z) € [—¢, A]} for arbitrarily large
A € R, rather than just on the strip {z : Re(z) € [—¢,1 — €]}. Then it’s easy to see that for any fixed
p € (1,00), we can choose A large enough such that N, is LP bounded for any « € (%, 1), and thus
Condition 4 holds by the previous subsection. This idea is promising, since our definition of dZm(u&)|y=1
can be analytically continued to the entire complex plane. By repeatedly integrating i~* by parts for
Re(w) > 0, where " is the Riesz integral as in (5.20), for all k € Z we get expressions for d* valid for
Re(z) < k as

k—1 i e 5 .
(2 —t)=H 4@ (—1)k / gy d9)
d? = —1)/ . t — — )7t . du.
ma (€) ;( PG ™ | gy ) () 7, (u€)du
In order to control the family of symbols n, = dZm(u&)|u=1 considered in the proof of Carbery’s

Condition 4 past Re(z) = 1 — &, we need to be able to control %ml(uf)du for j < [A], analogous to
how we needed an understanding of my(u) and —Lm (u) in Carbery’s case. It isn’t hard to show that
d@ 3%

<
qa ") S Gl

The extra factors of |£]/ that are picked up from (£ - V)*my(€) as Re(z) increases pose a problem to
interpolating the family of multipliers n, = dZmq(u€)|,—1 past Re(z) = 1 —e. Miiller, in his 1990 paper
[Miil90], was able to compensate for this issue and satisfy Carbery’s Condition 4 by performing analytic
interpolation on the strip S = {z : Re(z) € [—¢, A]} instead with the family of multipliers defined by the
symbols

Mo (§) = (14 [€)) 727 dfma (8)]1-1. (6.1)

The detailed analysis involved in bounding m, ¢(§) in LP? multiplier norm for p < 2 on the line z = —e+iy
and bounding m (&) in L? multiplier norm on the entire strip S = {z : Re(2) € [—¢, A]} (equivalently,
bounding sup, m. . (&) on S) involves dependence on particular geometric properties of our fixed convex
body. We associate two geometric quantities o and @ to a symmetric convex body B C R? of volume
1. We define ﬁ to be the infimum of the volume of the d — 1 dimensional cross sections of our body
with all hyperplanes crossing through the origin. We define Q(B) to be the supremum of the volume of
the d — 1 dimensional orthogonal projections on all hyperplanes. As o(B) and Q(B) are invariant under
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SL(RY), we can assume that B is in isotropic position and thus satisfies the conclusion of Lemma 4 so
that all d — 1 dimensional cross sections are the same volume up to a constant. In this way, we see that
o(B) is equal to the isotropy constant L of B up to the universal constant in Lemma 4.

With this setup, Miiller proved the following;:

1

Theorem 9. For any p € (1,00), € € (0,3

), @ € (3,1), and B a symmetric convex body of
volume 1 in R4, we have that

[Maellp—p < Calp,o(B),Q(B)).

In particular, this constant is independent of d.

In particular, once we fix a p, choosing € small enough so that o :=1—¢ > % gives us that m. 1. =
di ~*m(t€)|s—1 is LP multiplier bounded. By Lemma 8, we see that (& - V)'~*m(¢) is LP multiplier
bounded, and therefore Carbery’s Condition 4 is met. Combining Miiller’s contributions with the rest
of Carbery’s proof, we get the following result:

Corollary 2. Consider a sequence of symmetric convex bodies (Bg)4en such that Volg(Bg) = 1.
If the quantities o(By) and Q(B,) are uniformly bounded in d, then for all p € (1,00) the LP
operator norm of maximal functions Mp, can be bounded with constant independent of d.

While we do not show it here, one can show that for q € (1,00) and (Bg)aen the family of £7 balls in R9,
the geometric quantities Q(By) and o(B,) are bounded independent of d. Thus we may conclude that
the maximal function for ¢4 balls is L? bounded independent of dimension for all p > 1.

In the case of the family of cubes, i.e. the family By of £°° balls in R, we have that Q(By) = V/d, and so
Miiller’s argument doesn’t allow us to conclude that the maximal function for cubes has dimension-free
LP bounds in the case of p € (1, %] This case was only resolved in 2014, where Bourgain in [Boul4] was

able to explicitly show the necessary decay of %m(u«f ) for m the Fourier transform of the cube. This
allowed him to perform an analytic interpolation of families argument to show an analogue of Carbery’s
Condition 4.

We end this article with a short discussion of open questions. If a sequence of symmetric convex bodies
(B4)den do not have Q(By) and o(Bg) bounded uniformly in d, it is still unknown precisely when the
family of maximal operators Mp, enjoy LP operator norm bounds independent of d for p € (1, %]
Analogous to the dimension-free LP estimates to the spherical maximal function, a similar question
can also be asked about the behavior of LP operator norms of maximal functions corresponding to the
boundaries of a sequence of convex bodies (Bg)4en (where the surface measure on the sphere is replaced
with a normalized Hausdorff measure). Finally, in the introduction, a result of Tiser was mentioned that
passed the dimension free bounds on the Euclidean maximal function to the infinite dimensional case,
in order to prove a Lebesgue differentiation theorem for certain Gaussian measures on Hilbert spaces. It
is natural to ask if the same can be done with the results of Carbery and Miiller as well as the recent
results of Bourgain for cubes to prove a Lebesgue differentiation theorem for 9 balls in Hilbert spaces
as well.
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